Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tính nhanh nguyên hàm - tích phân từng phần sử dụng sơ đồ đường chéo - Ngô Quang Chiến

Tài liệu gồm 7 trang hướng dẫn cách tính nhanh nguyên hàm – tích phân từng phần bằng sơ đồ đường chéo do thầy Ngô Quang Chiến biên soạn. Khi mà các đề thi THPT Quốc gia, đề kiểm tra và đề thi học kỳ môn Toán đều chuyển sang dạng bài trắc nghiệm, không yêu cầu trình bày lời giải thì phương pháp này càng cho thấy sự hiệu quả và rút ngắn thời gian làm bài. Phương pháp sơ đồ đường chéo tỏ ra đặc biệt hiệu quả và hữu ích đối với các dạng bài nguyên hàm – tích phân phải sử dụng tích phân từng phần nhiều lần. Nội dung tài liệu : I. NHẮC LẠI KIẾN THỨC 1. Công thức: ∫udv = vu – ∫vdu 2. Áp dụng với các dạng nguyên hàm: ∫p(x).e^(ax + b)dx, ∫p(x).sin(ax + b)dx, ∫p(x).cos(ax + b)dx, ∫p(x).(ln(ax + n))^ndx …. 3. Cách đặt: + Ưu tiên đặt “u” theo: logarit (ln) → đa thức (p(x)) → lượng giác (sinx, cosx) → mũ (e^x) (Nhất log – nhì đa – tam lượng – tứ mũ ) + Phần còn lại là “dv” II. PHƯƠNG PHÁP 1. Chia thành 2 cột + Cột 1 (cột trái: cột u) luôn lấy đạo hàm tới 0 + Cột 2 (cột phải: cột dv) luôn lấy nguyên hàm cho tới khi tương ứng với cột 1 2. Nhân chéo kết quả của hai cột với nhau 3. Dấu của phép nhân đầu tiên sẽ có dấu (+), sau đó đan dấu (-), (+), (-) … [ads] III. PHÂN DẠNG VÀ VÍ DỤ MINH HOẠ 1. Dạng ∫p(x).e^(ax + b)dx 2. Dạng ∫p(x).sin(ax + b)dx, ∫p(x).cos(ax + b)dx 3. Dạng ∫p(x).(ln(ax + n))^ndx Dạng ∫p(x).(ln(ax + n))^ndx thì ưu tiên đặt u = (ln(ax + n))^n vì vậy khi đạo hàm “u” sẽ không bằng 0 được, do vậy cần phải điều chỉnh hệ số rút gọn (nhân ngang → đơn giản tử mẫu) rồi sau đó mới làm tiếp. 4. Dạng 4: Nguyên hàm lặp (tích phân lặp) Nếu khi ta tính nguyên hàm (tích phân) theo sơ đồ đường chéo mà lặp lại nguyên hàm ban đầu cần tính (theo hàng ngang) thì dừng lại luôn ở hàng đó, không tính tiếp nữa. a. Dấu hiệu khi dừng lại: nhận thấy trên cùng 1 hàng ngang tích của 2 phần tử ở 2 cột (không kể dấu và hệ số) giống nguyên hàm ban đầu cần tính. b. Ghi kết quả (nhân theo đường chéo) như các ví dụ trên. c. Nối 2 phần tử (ở dòng dừng lại), có thêm dấu ∫ trước kết quả và coi gạch nối là 1 đường chéo, sử dụng quy tắc đan dấu. IV. BÀI TẬP VẬN DỤNG (sưu tầm và biên soạn)

Nguồn: toanmath.com

Đọc Sách

Ứng dụng của tích phân trong hình học
Tài liệu gồm 376 trang được biên soạn bởi quý thầy, cô giáo nhóm Geogebra – Nguyễn Chín Em, tuyển tập 647 câu hỏi và bài toán trắc nghiệm chủ đề ứng dụng tích phân trong hình học, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình tự học chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng. Khái quát nội dung tài liệu ứng dụng của tích phân trong hình học: Phần 1 . Câu hỏi và bài tập mức độ nhận biết: 100 câu. + Cho hình phẳng D giới hạn bởi đường cong y = e mũ x, trục hoành và các đường thẳng x = 0, x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu? + Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = cos x,  y = 0, x = 0, x = π quay xung quanh Ox. Phần 2 . Câu hỏi và bài tập mức độ thông hiểu: 199 câu. + Diện tích hình phẳng giới hạn bởi các đường y = √(1 + ln x)/x, y = 0, x = 1, x = e là S = a√2 + b. Khi đó tính giá trị a^2 + b^2? + Tính diện tích hình phẳng giới hạn bởi đồ thị (P): y = x^2 − 4x + 5 và các tiếp tuyến với (P) tại A(1;2) và B(4;5). [ads] Phần 3 . Câu hỏi và bài tập mức độ vận dụng thấp: 199 câu. + Diện tích hình phẳng nằm trong góc phần tư thứ nhất, giới hạn bởi các đường thẳng y = 8x, y = x và đồ thị hàm số y = x^3 là phân số tối giản. Khi đó a + b bằng? + Bác Năm làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Vậy số tiền bác Năm phải trả là? Phần 4 . Câu hỏi và bài tập mức độ vận dụng cao: 100 câu. + Cho hàm số y = f(x) có đồ thị hàm số y = f'(x) cắt trục Ox tại ba điểm có hoành độ a < b < c như hình vẽ. Xét 4  mệnh đề sau:  (1): f(c) < f(a) < f(b). (2): f(c) > f(b) > f(a). (3): f(a) > f(b) > f(c). (4): f(a) > f(b). Trong các mệnh đề trên có bao nhiêu mệnh đề đúng? + Cho số dương a thỏa mãn hình phẳng giới hạn bởi các đường parabol y = ax2 − 2 và y = 4 − 2ax2 có diện tích bằng 16. Tìm giá trị của a. Phần 5 . Ứng dụng tích phân giải bài toán thực tế: 49 câu. + Một quả trứng có hình dạng khối tròn xoay, thiết diện qua trục của nó là hình elip có độ dài trục lớn bằng 6, độ dài trục bé bằng 4. Tính thể tích quả trứng đó. + Sân chơi cho trẻ em hình chữ nhật có chiều dài 100 m và chiều rộng là 60 m người ta làm một con đường nằm trong sân (như hình vẽ).
Tích phân liên quan đến phương trình hàm ẩn
Tài liệu gồm 27 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán tích phân liên quan đến phương trình hàm ẩn, được phát triển dựa trên câu 48 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu tích phân liên quan đến phương trình hàm ẩn: A. KIẾN THỨC CẦN NHỚ 1. Các tính chất tích phân. 2. Công thức đổi biến số. B. BÀI TẬP MẪU 1. Đề bài : Cho hàm số $f(x)$ liên tục trên $R$ và thỏa mãn $xf\left( {{x^3}} \right) + f\left( {1 – {x^2}} \right)$ $ = – {x^{10}} + {x^6} – 2x$ với mọi $\forall x \in R.$ Khi đó $\int_{ – 1}^0 f (x)dx$ bằng? [ads] 2. Phân tích hướng dẫn giải 1. Dạng toán: Tính tích phân hàm ẩn. 2. Kiến thức cần nhớ: + Công thức đổi biến số trong tích phân. + Tính chất tích phân. 3. Hướng giải: + Bước 1: Nhân cả hai vế của phương trình với $x$ rồi sử dụng tích phân hai vế để tính $\int_{ – 1}^1 f (x)dx.$ + Bước 2: Nhân cả hai vế của phương trình với $x$ rồi sử dụng tích phân hai vế để tính $\int_0^1 f (x)dx.$ + Bước 3: Kết luận $\int_{ – 1}^0 f (x)dx.$ C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN
Tóm tắt lý thuyết và bài tập trắc nghiệm ứng dụng tích phân
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm ứng dụng tích phân, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 3: nguyên hàm, tích phân và ứng dụng. Bên cạnh tài liệu ứng dụng tích phân dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm ứng dụng tích phân: A. KIẾN THỨC CƠ BẢN 1. Diện tích hình phẳng. 2. Thể tích vật thể và thể tích khối tròn xoay. B. CÂU HỎI TRẮC NGHIỆM I – Câu hỏi tính diện tích hình phẳng giới hạn bởi các đường + Trường hợp 1. Cho hai hàm số $f(x)$ và $g(x)$ liên tục trên đoạn $[a;b].$ Diện tích hình phẳng giới hạn bởi các đường $y = f(x)$, $y = g(x)$, $x = a$, $x = b$ là $S = \int_a^b | f(x) – g(x)|dx.$ + Trường hợp 2. Cho hai hàm số $f(x)$ và $g(x)$ liên tục trên đoạn $[a;b].$ Diện tích hình phẳng giới hạn bởi các đường $y = f(x)$, $y = g(x)$ là $S = \int_\alpha ^\beta | f(x) – g(x)|dx.$ Trong đó $\alpha $, $\beta $ là nghiệm nhỏ nhất và lớn nhất của phương trình $f(x) = g(x)$ $(a \le \alpha < \beta \le b).$ II – Câu hỏi tính tính thể tích vật tròn xoay giới hạn bởi các đường + Trường hợp 1. Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường $y = f(x)$, $y = 0$, $x = a$ và $x = b$ $(a < b)$ quay quanh trục $Ox$ là $V = \pi \int_a^b {{f^2}} (x)dx.$ + Trường hợp 2. Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường $y = f(x)$, $y = g(x)$, $x = a$ và $x = b$ $(a < b)$ quay quanh trục Ox là $V = \pi \int_a^b {\left| {{f^2}(x) – {g^2}(x)} \right|dx} .$ C. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm tích phân
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm tích phân, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 3: nguyên hàm, tích phân và ứng dụng. Bên cạnh tài liệu tích phân dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm tích phân: A. KIẾN THỨC CƠ BẢN 1. Định nghĩa tích phân. 2. Tính chất của tích phân. B. KỸ NĂNG CƠ BẢN 1. Dạng 1 : Tính tích phân theo công thức. 2. Dạng 2 : Dùng tính chất cận trung gian để tính tích phân. Sử dụng tính chất $\int_a^b {[f(x) + g(x)]dx} $ $ = \int_a^b f (x)dx + \int_a^b g (x)dx$ để bỏ dấu giá trị tuyệt đối. [ads] 3. Dạng 3 : Phương pháp đổi biến số. + Đổi biến số dạng 1: Cho hàm số $f$ liên tục trên đoạn $[a;b].$ Giả sử hàm số $u = u(x)$ có đạo hàm liên tục trên đoạn $[a;b]$ và $\alpha \le u(x) \le \beta .$ Giả sử có thể viết $f(x) = g(u(x))u'(x)$, $x \in [a;b]$ với $g$ liên tục trên đoạn $[\alpha ; \beta.]$ Khi đó, ta có $I = \int_a^b f (x)dx$ $ = \int_{u(a)}^{u(b)} g (u)du.$ + Đổi biến số dạng 2: Cho hàm số $f$ liên tục và có đạo hàm trên đoạn $[a;b].$ Giả sử hàm số $x = \varphi (t)$ có đạo hàm và liên tục trên đoạn $[\alpha ;\beta ]$ sao cho $\varphi (\alpha ) = a$, $\varphi (\beta ) = b$ và $a \le \varphi (t) \le b$ với mọi $t \in [\alpha ;\beta ].$ Khi đó: $\int_a^b f (x)dx$ $ = \int_\alpha ^\beta f (\varphi (t))\varphi ‘(t)dt.$ 4. Dạng 4 : Phương pháp tính tích phân từng phần: Nếu $u = u(x)$ và $v = v(x)$ là hai hàm số có đạo hàm và liên tục trên đoạn $[a;b]$ thì $\int_a^b u (x)v'(x)dx$ $ = \left. {(u(x)v(x))} \right|_a^b – \int_a^b {u’} (x)v(x)dx.$ C. BÀI TẬP TRẮC NGHIỆM D. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM