Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 lần 1 năm 2019 - 2020 trường Đồng Đậu - Vĩnh Phúc

Nhằm đáp ứng yêu cầu kiểm tra đánh giá chất lượng học tập trong giai đoạn giữa học kỳ 1 đối với học sinh khối 12, ngày … tháng 10 năm 2019, trường THPT Đồng Đậu, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán 12 năm học 2019 – 2020 lần thứ nhất. Đề khảo sát chất lượng Toán 12 lần 1 năm học 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc có mã đề 120, đề gồm 06 trang với 50 câu trắc nghiệm, ngoài các kiến thức Toán 12 học sinh đã học, đề thi còn các câu hỏi và bài toán thuộc chương trình Toán 11, điều này giúp học sinh khối 12 được rèn luyện thường xuyên để hướng đến kỳ thi THPT Quốc gia môn Toán năm 2020, đề thi có đáp án. Trích dẫn đề khảo sát chất lượng Toán 12 lần 1 năm 2019 – 2020 trường Đồng Đậu – Vĩnh Phúc : + Ông An gửi 320 triệu đồng vào ngân hàng ACB và VietinBank theo phương thức lãi kép. Số tiền thứ nhất gửi vào ngân hàng ACB với lãi suất 2,1% một quý trong thời gian 15 tháng. Số tiền còn lại gửi vào ngân hàng VietinBank với lãi suất 0,73% một tháng trong thời gian 9 tháng. Biết tổng số tiền lãi ông An nhận được ở hai ngân hàng là 26670725,95 đồng. Hỏi số tiền ông An lần lượt ở hai ngân hàng ACB và VietinBank là bao nhiêu (số tiền được làm tròn tới hàng đơn vị)? A. 120 triệu đồng và 200 triệu đồng. B. 200 triệu đồng và 120 triệu đồng. C. 140 triệu đồng và 180 triệu đồng. D. 180 triệu đồng và 140 triệu đồng. [ads] + Đợt xuất khẩu gạo của tỉnh Vĩnh Phúc thường kéo dài trong 2 tháng (60 ngày). Người ta nhận thấy số lượng xuất khẩu gạo tính theo ngày thứ t được xác định bởi công thức S(t) = t^3 – 72t^2 + 405t + 3100 (1 ≤ t ≤ 60). Hỏi trong mấy ngày đó thì ngày thứ mấy có số lượng xuất khẩu gạo cao nhất? + Một sợi dây có chiều dài 28m được cắt thành hai đoạn để làm thành một hình vuông và một hình tròn. Tính chiều dài (theo đợn vị mét) của đoạn dây làm thành hình vuông được cắt ra sao cho tổng diện tích của hình vuông và hình tròn là nhỏ nhất?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán THPTQG 2018 trường THPT Ba Đình - Thanh Hóa lần 3
Đề thi thử Toán THPTQG 2018 trường THPT Ba Đình – Thanh Hóa lần 3 mã đề 132 được biên soạn nhằm tạo điều kiện để các em học sinh lớp 12 được ôn tập, cọ xát thường xuyên, rèn luyện để nâng cao kiến thức và kỹ năng giải toán, chuẩn bị cho kỳ THPT Quốc gia năm 2018, kỳ thi được diễn ra vào ngày 04/06/2018, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử Toán 2018 THPT Ba Đình – Thanh Hóa lần 3 : + Cho hàm số y = (2x + 1)/(x – 1) có đồ thị (C), I(1;2). Tiếp tuyến Δ của (C) cắt hai đường thẳng tiệm cận của đồ thị (C) lần lượt tại A và B sao cho chu vi tam giác IAB đạt giá trị nhỏ nhất (hoành độ tiếp điểm > 0). Khoảng cách từ gốc tọa độ đến tiếp tuyến Δ gần giá trị nào nhất? [ads] + Bác An gửi ngân hàng 155 triệu đồng, với lãi suất 1,02% một quý. Hỏi sau một năm số tiền lãi bác An nhận được là bao nhiêu? (làm tròn đến hàng nghìn). + Cho bát diện đều ABCDEF có các cạnh bằng 1. Dựng điểm E’ sao cho vtBA = vtEE’, B’ là điểm đối xứng với B qua trung điểm của cạnh DE. Thể tích của khối đa diện BFB’EE’A bằng?
Đề thi thử THPTQG 2018 môn Toán trường THPT An Mỹ - Bình Dương lần 2
Đề thi thử THPTQG 2018 môn Toán trường THPT An Mỹ – Bình Dương lần 2 mã đề 152 được biên soạn nhằm giúp các em học sinh lớp 12 được cọ xát thường xuyên, rèn luyện để nâng cao năng lực giải Toán, hướng đến kỳ thi THPT Quốc gia năm 2018, đề thi có đáp án đầy đủ các mã đề 152, 186, 220, 254. Trích dẫn đề thi thử 2018 môn Toán THPT An Mỹ – Bình Dương lần 2 : + Gia đình bạn An gửi vào ngân hàng 100 triệu đồng theo hình thức lãi suất kép. Lãi suất ngân hàng là 8% trên năm và không thay đổi qua các năm gia đình gửi tiền. Sau 5 năm gia đình bạn An cần tiền để cho bạn đi học, nên gia đình đã rút toàn bộ số tiền và sử dụng một nửa số tiền đó vào việc học của An, số còn lại gia đình tiếp tục gửi ngân hàng với hình thức như trên. Hỏi sau 10 năm gia đình bạn An đã thu được số tiền lãi là bao nhiêu ? (đơn vị tính là triệu đồng). [ads] + Trong một lớp có 2x+3 học sinh gồm Hùng, Hải, Hường và 2x học sinh khác. Khi xếp tùy ý các học sinh này vào dãy ghế được đánh số từ 1 đến 2x+3, mỗi học sinh ngồi 1 ghế thì xác suất để số ghế của Hải bằng trung bình cộng số ghế của Hùng và số ghế của Hường là 12/575. Tính số học sinh trong lớp. + Thầy giáo có câu hỏi trắc nghiệm, trong đó có câu đại số và câu hình học. Thầy gọi bạn Nam lên trả bài bằng cách chọn lấy ngẫu nhiên câu hỏi trong câu hỏi trên đê trả lời. Hỏi xác suất bạn Nam chọn ít nhất có một câu hình học là bằng bao nhiêu?
Đề thi thử Toán THPTQG 2018 trường Đại Học Hồng Đức - Thanh Hóa lần 2
Đề thi thử Toán THPTQG 2018 trường Đại Học Hồng Đức – Thanh Hóa lần 2 mã đề 123 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 03/06/2018 nhằm tạo điều kiện để các em 12 được cọ xát thường xuyên, củng cố và nâng cao kỹ năng giải toán trước khi bước vào kỳ thi THPT Quốc gia 2018 chính thức, đề thi có đáp án và lời giải chi tiết các câu hỏi khó. Trích dẫn đề thi thử Toán 2018 trường Đại Học Hồng Đức – Thanh Hóa lần 2 : + Cho hàm số y = f(x) xác định trên đoạn [a; b] (a < b). Khẳng định nào sau đây sai? A. Hàm số liên tục trên (a; b] khi và chỉ khi hàm số liên tục trên khoảng (a; b) và lim f(x) = f(b) khi x→b+. B. Hàm số liên tục trên [a; b) khi và chỉ khi hàm số liên tục trên khoảng (a; b) và lim f(x) = f(a) khi x→a+. C. Cho x0 ∈ (a; b), hàm số liên tục tại x0 khi và chỉ khi lim f(x) = f(x0) khi x→x0±. D. Cho x0 ∈ (a; b), hàm số có giới hạn là một số thực L tại x0 khi và chỉ khi lim f(x) = L khi x→x0±. [ads] + Gọi X là tập hợp tất cả các số tự nhiên có 6 chữ số đôi một khác nhau. Lấy ngẫu nhiên một số thuộc tập X. Tính xác suất để số lấy được luôn chứa đúng ba số thuộc tập Y = {1; 2; 3; 4; 5} và ba số này đứng cạnh nhau, có số chẵn đứng giữa hai số lẻ. + Một nhà nghiên cứu khảo sát sự chuyển động của chất điểm M và tìm được quy luật về quãng đường của M khi chuyển động là s(t) = t^4 − t^2 (t tính bằng giây từ lúc vật bắt đầu chuyển động). Hỏi trong khoảng 1 giây đầu sau khi chuyển động chất điểm M dừng mấy lần?