Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kỳ 2 Toán 12 năm 2017 - 2018 trường THPT Lê Quý Đôn - Hà Nội

Đề kiểm tra học kỳ 2 Toán 12 năm 2017 – 2018 trường THPT Lê Quý Đôn – Hà Nội mã đề 358 được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận, trong đó phần trắc nghiệm gồm 40 câu và từ luận gồm 2 câu, thời gian làm bài 90 phút. Trích dẫn đề kiểm tra học kỳ 2 Toán 12 năm 2017 – 2018 : + Người ta cắt hai hình cầu có bán kính lần lượt là R = 13cm và r = √41cm để làm hồ lô đựng rượu như hình vẽ bên. Biết đường tròn giao của hai hình cầu có bán kính r’ = 5cm và nút uống rượu là một hình trụ có bán kính đáy bằng √5cm, chiều cao bằng 4cm. Giả sử độ dày vỏ hồ lô không đáng kể. Hỏi hồ lô đựng được bao nhiêu lít rượu? (Kết quả làm tròn đến một chữ số thập phân sau dấu phẩy). [ads] + Cho khối nón tròn xoay đỉnh S có đường cao h = 20cm, bán kính đáy r = 25cm. Một mặt phẳng (P) đi qua S và có khoảng cách đến tâm O của đáy là 12cm. Thiết diện của (P) với khối nón là tam giác SAB, với A, B thuộc đường tròn đáy. Tính diện tích tam giác SAB. + Một học sinh đang điều khiển xe đạp điện chuyển động thẳng đều với vận tốc a(m/s). Khi phát hiện có chướng ngại vật phía trước, học sinh đó thực hiện phanh xe. Sau khi phanh, xe chuyển động chậm dần với vận tốc v(t) = a – 2t (m/s). Tìm giá trị lớn nhất của a để quãng đường xe đạp điện đi được sau khi phanh không vượt quá 9m.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Phan Bội Châu Đắk Lắk
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Phan Bội Châu Đắk Lắk Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 mã đề 121 và mã đề 122 đề thi HK2 Toán lớp 12 năm học 2019 – 2020 trường THPT Phan Bội Châu – Đắk Lắk; đề gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 121, 122, 123, 124, 125, 126, 127, 128. Trích dẫn đề thi HK2 Toán lớp 12 năm 2019 – 2020 trường THPT Phan Bội Châu – Đắk Lắk : + Tập hợp điểm biểu diễn của số phức z thỏa mãn |z – 1 + 3i| = |z¯ + 2 – i| là: A. Đường thẳng có phương trình 6x – 4y – 5 = 0. B. Đường thẳng có phương trình 3x + 2y – 5 = 0. C. Đường thẳng có phương trình 6x + 4y – 5 = 0. D. Đường thẳng có phương trình 3x – 2y – 5 = 0. + Mặt cầu (S): x2 + y2 + z2 – 4x + 3y – 2z = 0 cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác điểm O). Phương trình tham số đường thẳng d là giao tuyến mặt phẳng (ABC) và mặt phẳng (P): x – y + z – 1 = 0 là? [ads] + Trong không gian Oxyz, cho vật thế nằm giữa hai mặt phẳng x = 0 và x = 3. Biết rằng thiết diện của vật thế cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 ≤ x ≤ 3) là một hình vuông cạnh là √(9 – x^2). Tính thể tích V của vật thể. File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Lê Quý Đôn Quảng Ngãi
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Lê Quý Đôn Quảng Ngãi Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi HK2 Toán lớp 12 năm học 2019 – 2020 trường THPT Lê Quý Đôn – Quảng Ngãi; đề gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 132, 356, 525. Trích dẫn đề thi HK2 Toán lớp 12 năm 2019 – 2020 trường THPT Lê Quý Đôn – Quảng Ngãi : + Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 = 1 và điểm A(0;0;2). Đường thẳng d thay đổi qua A luôn cắt mặt cầu (S) tại hai điểm B và C sao cho B là trung điểm của AC, biết rằng tập hợp điểm B luôn nằm trên một đường tròn cố định. Tính bán kính đường tròn đó. [ads] + Cho số phức z = 2 + i. Trong mặt phẳng Oxy, gọi A và B lần lượt là điểm biểu diễn của số phức z và z¯. Tính diện tính tam giác OAB (với O là gốc tọa độ). + Trong mặt phẳng Oxy, tập hợp các điểm biểu diễn số phức z thỏa |2z/(1 – i) + 2 + 4i| = |z(1 – i) + 6 + 4i| là đường thẳng có phương trình ax + by – 4 = 0. Tính a^2 + b^2. File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường Phổ thông Năng khiếu TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường Phổ thông Năng khiếu TP HCM Bản PDF Ngày … tháng 06 năm 2020, trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh tổ chức kỳ thi học kỳ 2 môn Toán học lớp 12 năm học 2019 – 2020. Đề thi học kỳ 2 Toán lớp 12 năm 2019 – 2020 trường Phổ thông Năng khiếu – TP HCM mã đề 628 gồm 30 câu trắc nghiệm (06 điểm) và 04 câu tự luận (04 điểm), thời gian làm bài 90 phút, không kể thời gian phát đề. Trích dẫn đề thi học kỳ 2 Toán lớp 12 năm 2019 – 2020 trường Phổ thông Năng khiếu – TP HCM : + Gọi (D) là miền phẳng giới hạn bởi (C) : y = 2√log2(x), trục Ox và đường thẳng x = 5. Tính thể tích V của vật thể tròn xoay sinh bởi (D) khi (D) quay quanh trục Ox. + Trong mặt phẳng phức Oxy, xem tập hợp E các số phức z thỏa |z − 5i| ≤ 3. Nếu trong tập E, số phức z0 có môđun nhỏ nhất thì phần ảo của z0 bằng bao nhiêu? [ads] + Trong mặt phẳng phức Oxy, tập hợp các điểm biểu diễn số phức z sao cho z2 là số thuần ảo là hai đường thẳng d1, d2. Góc α giữa hai đường thẳng d1, d2 là bao nhiêu?
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trần Khai Nguyên TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trần Khai Nguyên TP HCM Bản PDF Nhằm giúp các em học sinh lớp 12 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 12 sắp tới, Sytu giới thiệu đến các em đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Trần Khai Nguyên, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Trần Khai Nguyên – TP HCM : + Gọi M và N lần lượt là các điểm biểu diễn của z1, z2 trên mặt phẳng tọa độ, I là trung điểm MN, O là gốc tọa độ (ba điểm O, M, N phân biệt và không thẳng hàng). Mệnh đề nào sau đây là đúng? + Trong không gian với hệ tọa độ Oxyz, cho vật thể (H) giới hạn bởi hai mặt phẳng có phương trình x = a và x = b (a < b). Gọi S(x) là diện tích thiết diện của (H) bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x, với a =< x =< b. Giả sử hàm số y = S(x) liên tục trên đoạn [a;b]. Khi đó, thể tích V của vật thể (H) được cho bởi công thức? + Cho hai mặt cầu (S1), (S2) có cùng bán kính R thỏa mãn tính chất: tâm của (S1) nằm trên mặt cầu (S2) và ngược lại. Tính thể tích phần chung V của hai khối cầu tạo bởi (S1) và (S2).