Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

17 dạng toán hình học giải tích phẳng Oxy

Tài liệu 17 dạng toán hình học giải tích phẳng Oxy cung cấp hệ thống lý thuyết và bài tập rất đầy đủ về hình học Oxy với các nội dung: PHẦN 1: TỔNG HỢP KIẾN THỨC CƠ BẢN PHẦN 2: NHỮNG BÀI TOÁN CƠ BẢN Bài toán 1. Tìm toạ độ giao điểm của hai đường thẳng cắt nhau Bài toán 2. Tìm điểm đối xứng của một điểm qua một đường thẳng Bài toán 3. Kiểm tra tính cùng phía, khác phía với một đường thẳng Bài toán 4. Viết phương trình đường phân giác của góc tạo bởi hai đường thẳng cắt nhau Bài toán 5. Viết phương trình đường phân giác trong, phân giác ngoài của góc trong tam giác Bài toán 6. Tìm chân đường phân giác trong, ngoài của góc trong tam giác Bài toán 7. Tìm trọng tâm, trực tâm, tâm đường tròn ngoại tiếp, nội tiếp tam giác PHẦN 3: 10 BÀI TOÁN HÌNH HỌC OXY Bài toán 1. Tìm M thuộc đường thẳng d đã biết phương trình và cách điểm I một khoảng cho trước (IM=R không đổi) Bài toán 2. Tìm M thuộc đường thẳng d và cách đường thẳng d’ một khoảng không đổi [ads] Bài toán 3. Tìm M thuộc đường thẳng d sao cho tam giác MAB là tam giác đăc biệt (vuông, cân, hai cạnh có mối quan hệ về độ dài) Bài toán 4. Tìm M thuộc đường thẳng d và thoả điều kiện cho trước (mở rộng của bài toán 1, 2, 3) Bài toán 5. Tìm M dựa vào hệ thức vectơ Bài toán 5.1 Tìm toạ độ M liên hệ với hai (ba) điểm cho trước qua một hệ thức vectơ MA = kMB Bài toán 5.2 Tìm toạ độ hai điểm M, N lần lượt thuộc hai đường thẳng và liên hệ với điểm thứ ba cho trước qua hệ thức vectơ Bài toán 6. Viết phương trình đường thẳng TRƯỜNG HỢP 1. Bài toán không cho vectơ pháp tuyến (hoặc vectơ chỉ phương) Bài toán 6.1 Viết phương trình đường thẳng d đi qua 1 điểm, cách một điểm cho trước một khoảng không đổi Bài toán 6.2 Viết phương trình đường thẳng d đi qua 1 điểm, tạo với đường thẳng cho trước một góc không đổi TRƯỜNG HỢP 2. Bài toán cho vectơ pháp tuyến (hoặc vectơ chỉ phương) Bài toán 6.3 Viết phương trình đường thẳng d biết phương của đường thẳng và d cách điểm cho trước một khoảng không đổi Bài toán 6.4 Viết phương trình đường thẳng d biết phương của đường thẳng và thoả mãn điều kiện cho trước Bài toán 7. Tìm điểm dựa vào trung tuyến, đường cao, trung trực trong tam giác. Bài toán 8. Tìm điểm dựa vào phân giác trong (ngoài) của tam giác Bài toán 9. Tìm điểm thuộc (E) thoả điều kiện cho trước. Viết phương trình chính tắc của (E) Bài toán 10. Cho hai đường tròn cắt nhau tại 2 điểm AB. Viết phương trình đường thẳng AB PHẦN 4: SÁNG TẠO VÀ SỰ PHÁT TRIỂN TỪ CÁC BÀI TOÁN HÌNH HỌC PHẲNG THUẦN TUÝ PHẦN 5: BÀI TẬP TỔNG HỢP

Nguồn: toanmath.com

Đọc Sách

Một số phương pháp giải bài toán hình học tọa độ phẳng Oxy - Bùi Thế Việt
Tài liệu trình bày một số phương pháp giải bài toán hình học tọa độ phẳng Oxy do tác giả Bùi Thế Việt biên soạn. Là một dạng bài toán yêu cầu tư duy hình học cao, Oxy trong kỳ thi THPT Quốc gia thường được cho dưới dạng tọa độ và yêu cầu của đề bài là đi tìm một dữ kiện nào đó của hình học, có thể là tìm tọa độ điểm, phương trình đường thẳng … Tuy nhiên, những bài tập Oxy này có một sự liên kết không hề nhẹ với phần hình học phẳng lớp 8, lớp 9 qua các định lý, tính chất hình học. Nhiều bạn chưa biết đến những tính chất này chắc hẳn sẽ vô cùng hoang mang vì không biết hướng giải quyết. Và chắc chắn cũng sẽ có những bạn biết đến tính chất này nhưng không biết cách chứng minh thế nào. [ads] Để giúp những bạn có tư duy hình học kém hoặc biết tính chất hình học nhưng chưa biết cách chứng minh, chuyên đề này sẽ gồm các phần như sau: + Vectơ – tích vô hướng và ứng dụng chứng minh tính chất hình học. + Giải Oxy bằng tham số hóa. + Chuẩn hóa các đại lượng trong Oxy. Để phù hợp với kiến thức thi THPT Quốc Gia, chuyên đề này đa phần lấy bài tập từ đề thi thử các trường THPT trên toàn quốc năm 2016.
10 bài toán oxy trọng tâm cho kì thi THPT Quốc gia 2016 - Lê Văn Tuấn (Moon.vn)
Tài liệu tuyển chọn 10 bài toán Oxy trọng tâm cho kì thi THPT Quốc gia 2016 của tác giả Lê Văn Tuấn. Mỗi bài toán được chọn lọc là một dạng riêng, có phân tích hướng tư duy rõ ràng và đưa ra nhiều cách giải khác nhau. Tài liệu gồm 10 trang. Các bài toán bao gồm : + Bài toán viết phương trình tạo góc + Bài toán sử dụng yếu tố đối xứng + Gắn hệ trục toạ độ + Bài toán 3 điểm – tạo thành tam giác cân + Bài toán 3 điểm tạo tam giác vuông + Bài toán 3 tạo thành tam giác vuông cân [ads] + Bài toán viết phương trình đường thẳng qua 1 điểm và vuông góc với đường thẳng đã cho + Bài toán viết phương trình đường thẳng qua 1 điểm và song song với đường thẳng đã cho + Bài toán 3 điểm thẳng hàng + Bài toán 4 điểm thuộc cùng 1 đường tròn + Bài toán có nội dung tính toán + Bài toán sử dụng vectơ giải Oxy
Tuyển chọn 100 bài toán hình học giải tích phẳng Oxy - Nguyễn Minh Tiến
Tài liệu gồm 78 trang tuyển chọn 100 bài toán hình học giải tích phẳng Oxy có lời giải chi tiết do tác giả Nguyễn Minh Tiến sưu tầm và biên soạn. Trích dẫn tài liệu : + Trong hệ trục tọa độ Oxy cho tam giác ABC biết đường cao kẻ từ A, trung tuyến kẻ từ B và phân giác kẻ từ C có phương trình lần lượt là (d1): 3x − 4y + 27 = 0; (d2): 4x + 5y − 3 = 0; (d3): x + 2y − 5 = 0. Xác định tâm và bán kính đường tròn ngoại tiếp tam giác ABC. [ads] + Trong hệ trục tọa độ Oxy cho tam giác ABC có điểm B (1/2; 1). Đường tròn nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA và AB tại D, E và F. Biết điểm D (3; 1) và phương trình đường thẳng EF có phương trình là (d) : y − 3 = 0. Tìm tọa độ đỉnh A biết đỉnh A có tung độ không âm. + Trong mặt phẳng với hệ trục tọa độ Oxy cho hình vuông ABCD có điểm B thuộc đường thẳng (d): 5x + 3y − 10 = 0. Gọi M là điểm đối xứng với D qua C, H và K (1; 1) lần lượt là hình chiếu của D, C lên AM. Xác định tọa độ các đỉnh của hình vuông ABCD biết phương trình đường thẳng đi qua H và tâm I của hình vuông là (d1) : 3x + y + 1 = 0.
Dự đoán và chứng minh tính chất hình học Oxy - Nguyễn Thanh Tùng
Tài liệu Dự đoán và chứng minh tính chất hình học Oxy của thầy giáo Nguyễn Thanh Tùng gồm 63 trang với các bài toán Oxy được phân loại theo các chủ đề: Hình vuông, hình chủ nhật, tam giác, tứ giác và đường tròn. Mỗi bài toán đều có hình vẽ rõ ràng giúp dễ dàng nhận ra tính chất, từ đó chứng minh tính chất chi tiết và hoàn thiện lời giải của bài toán. [ads]