Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia 2019 môn Toán sở GDĐT Điện Biên

Nằm trong kế hoạch ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức, vừa qua, sở Giáo dục và Đào tạo tỉnh Điện Biên đã tổ chức kỳ thi thử Trung học Phổ thông Quốc gia môn Toán năm 2019. Đề thi thử THPT Quốc gia 2019 môn Toán sở GD&ĐT Điện Biên có mã đề 001, đề được biên soạn dựa trên cấu trúc đề tham khảo THPT QG môn Toán năm 2019 do Bộ GD&ĐT công bố, đề gồm 09 trang với 50 câu trắc nghiệm, học sinh có 90 phút để hoàn thành bài thi thử THPT QG môn Toán (không kể thời gian giáo viên coi thi phát đề). Trích dẫn đề thi thử THPT Quốc gia 2019 môn Toán sở GD&ĐT Điện Biên : + Để thiết kế khu vườn hình vuông cạnh 10 mét như hình vẽ. Phần được tô đậm dùng để trồng cỏ, phần còn lại trồng Hoa Hồng. Biết mỗi mét vuông trồng cỏ chi phí mất 100.000 đồng, mỗi mét vuông trồng Hoa thi mất 300.000. Tính tổng chi phí của vườn trong trường hợp diện tích trồng hoa là nhỏ nhất (làm tròn đến hàng nghìn). [ads] + Một vật thể đựng đầy nước hình lập phương không có nắp. Khi thả một khối cầu kim loại đặc vào trong hình lập phương thì thấy khối cầu tiếp xúc với tất cả các mặt của hình lập phương đó. Tính bán kính của khối cầu, biết thể tích nước còn lại trong hình lập phương là 10 (đvtt). Giả sử các mặt của hình lập phương có độ dày không đáng kể. + Hàm số y = f(x) có đồ thị như hình vẽ. Mệnh đề nào sau đây đúng? A. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [-2;1] lần lượt là f(0) và f(-2). B. Giá trị nhỏ nhất, giá trị lớn nhất của hàm số f(x) trên đoạn [-2;1] lần lượt là f(-2) và f(1). C. Hàm số không có cực trị. D. Hàm số nhận giá trị âm với mọi x thuộc R.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2021 môn Toán trường THPT Lê Quý Đôn - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử tốt nghiệp THPT 2021 môn Toán trường THPT Lê Quý Đôn – Hà Nội. Trích dẫn đề thi thử tốt nghiệp THPT 2021 môn Toán trường THPT Lê Quý Đôn – Hà Nội : + Cho hàm số y f x liên tục trên R và số thực k thỏa mãn f k 2 0. Giả sử đạo hàm y f x có đồ thị như hình vẽ và hàm số y f x k có 7 điểm cực trị. Phương trình 3 f x x k 3 0 có ít nhất bao nhiêu nghiệm trong khoảng (-2;2). + Cho mặt cầu 2 2 2 1 2 1 3 S x y z và đường thẳng 4 6 2 6 2 1 x y z. Từ điểm M kẻ các tiếp tuyến đến mặt cầu S và gọi C là tập hợp các tiếp điểm. Biết khi diện tích hình phẳng giới hạn bởi C đạt giá trị nhỏ nhất thì C thuộc mặt phẳng x by cz d 0. Tìm b c d? + Cho y f x là một hàm số bậc 3 có đồ thị C như hình vẽ. Tiếp tuyến của C tại M (4;-2) cắt đồ thị hàm số tại điểm thứ hai N(-1;1). Biết diện tích hình phẳng giới hạn bởi C và tiếp tuyến (phần tô đậm) bằng 125 12. Tính 3 1 f x d.
Đề thi thử Toán THPTQG 2021 lần 3 trường chuyên Quang Trung - Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán THPTQG 2021 lần 3 trường THPT chuyên Quang Trung – Bình Phước; đề thi có đáp án. Trích dẫn đề thi thử Toán THPTQG 2021 lần 3 trường chuyên Quang Trung – Bình Phước : + Trong không gian Oxyz, cho đường thẳng d và hai điểm A(1;0;1), B(2;-1;1). Gọi M là điểm thuộc d sao cho P = MA + MB đạt giá trị nhỏ nhất, tính giá trị nhỏ nhất đó. + Cho mặt cầu (S) tâm O. Các điểm A, B, C thuộc mặt cầu sao cho AB = 3, AC = 4, BC = 5 và khoảng cách từ O đến mặt phẳng (ABC) bằng 3. Tính bán kính mặt cầu (S). + Trong không gian Oxyz, cho ba đường thẳng. Mặt phẳng (P) (với a, b là các số nguyên, a > 0) đi qua M(-2;3;-4) và cắt ba đường thẳng trên lần lượt tại ba điểm A, B, C sao cho tam giác ABC đều. Điểm nào sau đây thuộc mặt phẳng (P)?
Đề thi thử tốt nghiệp THPT 2021 môn Toán liên trường THPT - Hà Tĩnh
Thứ Năm ngày 03 tháng 06 năm 2021, một số trường THPT trực thuộc sở Giáo dục và Đào tạo tỉnh Hà Tĩnh liên kết tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề thi thử tốt nghiệp THPT 2021 môn Toán liên trường THPT – Hà Tĩnh được biên soạn bám sát cấu trúc đề tham khảo TN THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo; đề thi có đáp án mã đề 001 – 002 – 003 – 004. Trích dẫn đề thi thử tốt nghiệp THPT 2021 môn Toán liên trường THPT – Hà Tĩnh : + Cho hàm số 3 2 yx x 3 3 có đồ thị (C). Gọi E là một điểm thuộc (C) sao cho tiếp tuyến của (C) tại E cắt (C) tại điểm thứ hai F và diện tích hình phẳng giới hạn bởi đường thẳng EF với (C) bằng 27 64. Tiếp tuyến của (C) tại F cắt (C) tại điểm thứ hai Q. Diện tích hình phẳng giới hạn bởi đường thẳng FQ với (C) bằng? + Cho khối lăng trụ đứng ABC A B C có đáy ABC là tam giác vuông cân tại C AB a 2 và góc tạo bởi hai mặt phẳng (ABC’) và (ABC) bằng 60°. Gọi M N lần lượt là trung điểm của A C và BC. Mặt phẳng (AMN) chia khối lăng trụ thành hai phần. Thể tích của phần nhỏ bằng? + Trong không gian Oxyz, cho hai điểm E F (9;6;11) (5;7;2) và điểm M di động trên mặt cầu 2 22 Sx y z 1 2 3 36. Giá trị nhỏ nhất của ME MF 2 bằng?
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán sở GDĐT Nam Định
Chiều thứ Sáu ngày 04 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021; kỳ thi được diễn ra theo hình thức thi trực tuyến (thi online) để đảm bảo an toàn phòng chống dịch bệnh Covid-19. Đề thi thử tốt nghiệp THPT năm 2021 môn Toán sở GD&ĐT Nam Định gồm 07 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi thử tốt nghiệp THPT năm 2021 môn Toán sở GD&ĐT Nam Định : + Trong mặt phẳng tọa độ Oxy xét đồ thị (P): y = 1 + x và đường thẳng d: x = a (với a > 0) cắt nhau tại điểm A (tham khảo hình vẽ bên dưới). Kí hiệu S là diện tích của hình phẳng giới hạn bởi các đường Oy, (P) và đường thẳng OA; S’ là diện tích hình phẳng giới hạn bởi các đường Oy, (P), Ox và d. Giả sử rằng S = 1/3.S’, hỏi giá trị a thuộc khoảng nào sau đây? + Xét các số phức z, w thỏa mãn 2 24 6 và 4 3 2 w 3 6i. Khi x đạt giá trị nhỏ nhất, hãy tính? + Trong không gian tọa độ Oxyz, cho hai mặt cầu (S1) và (S2) và điểm A. Gọi I là tâm của mặt cầu (S) và (P) là mặt phẳng tiếp xúc với cả hai mặt cầu (S1) và (S2). Xét các điểm M thay đổi và thuộc mặt phẳng (P) sao cho đường thẳng IM tiếp xúc với mặt cầu (S2). Khi đoạn thẳng AM ngắn nhất thì M = (a;b;c). Tính giá trị của T = a + b + c.