Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 12 lần 2 năm 2023 - 2024 trường THPT Nguyễn Thị Giang - Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng học sinh giỏi môn Toán 12 lần 2 năm học 2023 – 2024 trường THPT Nguyễn Thị Giang, tỉnh Vĩnh Phúc; đề thi có đáp án trắc nghiệm mã đề 101. Trích dẫn Đề học sinh giỏi Toán 12 lần 2 năm 2023 – 2024 trường THPT Nguyễn Thị Giang – Vĩnh Phúc : + Một người gửi ngân hàng 100 triệu đồng với lãi suất r = 0,5% một tháng. Biết rằng nếu không rút tiền khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó có nhiều hơn 125 triệu? A. 44 tháng. B. 46 tháng. C. 45 tháng. D. 47 tháng. + Số lượng xe ô tô vào một đường hầm được cho bởi công thức 2 290 4 v f v trong đó vm s là vận tốc trung bình của các xe khi đi vào đường hầm. Biết trong một giây, lưu lượng xe vào hầm ở thời điểm vận tốc trung bình của các xe đạt v ms 0 là kết quả của tính giới hạn 0 lim v (làm tròn kết quả đến hàng đơn vị). Lưu lượng xe vào hầm ở thời điểm vận tốc trung bình của các xe đạt 20(m s) là? + Trong một bài thi trắc nghiệm khách quan có 10 câu. Mỗi câu có bốn phương án trả lời, trong đó chỉ có một phương án đúng. Mỗi câu trả lời đúng thì được 1 điểm, trả lời sai thì bị trừ 0,5 điểm. Một thí sinh do không học bài nên làm bài bằng cách với mỗi câu đều chọn ngẫu nhiên một phương án trả lời. Xác suất để thí sinh đó làm bài được số điểm không nhỏ hơn 7 là?

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển thi HSG Quốc gia lớp 12 môn Toán năm 2020 2021 sở GD ĐT Bến Tre
Nội dung Đề chọn đội tuyển thi HSG Quốc gia lớp 12 môn Toán năm 2020 2021 sở GD ĐT Bến Tre Bản PDF Thứ Năm ngày 17 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Bến Tre tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia lớp 12 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề chọn đội tuyển thi HSG Quốc gia Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Bến Tre gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển thi HSG Quốc gia Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Bến Tre : + Cho tam giác ABC nhọn có góc BAC = 30 độ. Hai đường phân giác trong và ngoài của góc ABC lần lượt cắt đường thẳng AC tại B1 và B2; hai đường phân giác trong và ngoài của góc ACB lần lượt cắt đường thẳng AB tại C1 và C2. Giả sử đường tròn đường kính B1B2 và đường tròn đường kính C1C2 cắt nhau tại một điểm P nằm bên trong tam giác ABC. Chứng minh rằng góc BPC = 90 độ. + Cho dãy số (un) được xác định bởi: u1 = 20; u2 = 30; u_n+2 = 3.u_n+1 – u_n với n thuộc N*. Tìm tất cả các số nguyên dương n sao cho 1 + 5.u_n.u_n+1 là một số chính phương. + Cho đa thức P(x;y) không phải là đa thức hằng, thỏa mãn: P(x;y).P(z;t) = P(xz + yt;xt + yz) với mọi x, y, z, t thuộc R. Chứng minh rằng: P(x;y) chia hết cho ít nhất một trong hai đa thức Q(x;y) = x + y; H(x;y) = x – y.
Đề chọn học sinh giỏi Toán năm 2020 2021 trường THPT chuyên Bến Tre
Nội dung Đề chọn học sinh giỏi Toán năm 2020 2021 trường THPT chuyên Bến Tre Bản PDF Đề chọn học sinh giỏi Toán năm 2020 – 2021 trường THPT chuyên Bến Tre gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh thi HSG Toán cấp tỉnh năm 2020 – 2021 trường THPT chuyên Bến Tre : + Vé xe buýt có dạng abcdef với a, b, c, d, e, f thuộc {0; 1; 2; …; 9}. Một vé như trên thỏa mãn điều kiện a + b + c = d + e + f được gọi là vé hạnh phúc. Tính số vé hạnh phúc. + Cho hai đường tròn (O1) và (O2) cắt nhau tại A và B. Các tiếp tuyến của (O1) tại A, B cắt nhau tại O. Gọi I là điểm trên đường tròn (O1) nhưng ngoài đường tròn (O2). Các đường thẳng IA, IB cắt đường tròn (O2) lần lượt tại C, D. Gọi M là trung điểm của đoạn thẳng CD. Chứng minh rằng: a) Các tam giác IAB và IDC đồng dạng với nhau. b) I, M, O thẳng hàng. + Cho hàm f: R → R thỏa mãn điều kiện: f(f(x) + 2f(y)) = f(x) + y + f(y) với mọi x, y thuộc R (1). a) Chứng minh f là đơn ánh. b) Tìm tất cả các hàm số thỏa mãn (1).
Đề chọn đội tuyển Toán năm 2020 2021 trường THPT chuyên Trần Phú Hải Phòng
Nội dung Đề chọn đội tuyển Toán năm 2020 2021 trường THPT chuyên Trần Phú Hải Phòng Bản PDF Thứ Bảy ngày 12 tháng 09 năm 2020, trường THPT chuyên Trần Phú, thành phố Hải Phòng tổ chức kỳ thi chọn đội tuyển học sinh giỏi cấp trường môn Toán năm học 2020 – 2021. Đề chọn đội tuyển Toán năm 2020 – 2021 trường THPT chuyên Trần Phú – Hải Phòng gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề chọn đội tuyển Toán năm 2020 – 2021 trường THPT chuyên Trần Phú – Hải Phòng : + Cho tam giác ABC nội tiếp đường tròn (O), D là điểm chính giữa cung BC không chứa A, E là điểm đối xứng với B qua AD, BE cắt (O) tại F khác B. Điểm P di chuyển trên cạnh AC. BP cắt (O) tại Q khác B. Đường thẳng qua C song song với AQ cắt FD tại điểm G. a) Gọi H là giao điểm của EG và BC. Chứng minh rằng B, P, E, H cùng thuộc một đường tròn, gọi đường tròn này là (K). b) (K) cắt (O) tại L khác B. Chứng minh rằng LP luôn đi qua một điểm S cố định khi P di chuyển. c) Gọi T là trung điểm PE. Chứng minh rằng đường thẳng qua T song song với LS đi qua trung điểm của AF. + Xác định tất cả các đa thức hệ số nguyên nhận 1 + √2021 làm nghiệm. + Có bao nhiêu số nguyên dương n không vượt quá 10^2020 thỏa mãn 2^n ≡ 2021 (mod 5^2020)?
Đề chọn học sinh giỏi lớp 12 môn Toán năm 2020 2021 trường THPT Chu Văn An Hà Nội
Nội dung Đề chọn học sinh giỏi lớp 12 môn Toán năm 2020 2021 trường THPT Chu Văn An Hà Nội Bản PDF Thứ Bảy ngày 12 tháng 09 năm 2020, trường THPT Chu Văn An, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi Toán dự thi thành phố lớp 12 THPT năm học 2020 – 2021. Đề chọn học sinh giỏi Toán lớp 12 năm 2020 – 2021 trường THPT Chu Văn An – Hà Nội gồm có 01 trang với 05 bài toán dạng tự luận: Hàm số, Phương trình và hệ phương trình, Giới hạn của dãy số, Tọa độ mặt phẳng Oxy, Hình học không gian, GTLN – GTNN của biểu thức nhiều biến số. Trích dẫn đề chọn học sinh giỏi Toán lớp 12 năm 2020 – 2021 trường THPT Chu Văn An – Hà Nội : + Trong mặt phẳng Oxy, cho tam giác ABC có M(2;1) là trung điểm cạnh AC, điểm H(0;-3) là chân đường cao kẻ từ A, điểm E(23;-2) thuộc đường thẳng chứa đường trung tuyến kẻ từ C. Tìm tọa độ điểm B biết rằng điểm A thuộc đường thẳng d: 2x + 3y – 5 = 0 và điểm C có hoành độ dương. + Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Gọi a là số đo của góc BAC và b là số đo của góc giữa đường thẳng OA và mặt phẳng (ABC). Gọi R và S lần lượt là bán kính đường tròn ngoại tiếp và diện tích tam giác ABC. Chứng minh rằng: (cos a)^2/sin 2b = R^2/S. + Xét a, b, c là các số thực dương, thoả mãn các điều kiện abc = 1 và a^2 + b^2 + 1/a^2b^2 = 1 + 2/ab. Tìm giá trị nhỏ nhất của biểu thức P = 1/(1 + 3c) – 1/(a^2 + 1) – 1/(1 + b^2).