Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện Toán THCS năm 2022 2023 phòng GD ĐT Cát Tiên Lâm Đồng

Nội dung Đề học sinh giỏi huyện Toán THCS năm 2022 2023 phòng GD ĐT Cát Tiên Lâm Đồng Bản PDF - Nội dung bài viết Chào quý thầy cô giáo và các em học sinh lớp 9! Chào quý thầy cô giáo và các em học sinh lớp 9! Đề thi chọn học sinh giỏi cấp huyện môn Toán THCS năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Cát Tiên, tỉnh Lâm Đồng đã được công bố. Hãy cùng Sytu tìm hiểu về các bài toán và phần kiến thức trong đề thi này. Bài toán đầu tiên đề cập đến việc đi xe đạp là một hình thức tập thể dục tốt cho sức khỏe và môi trường. Bạn Nam dự định đi từ nhà đến Sân Vận Động và trở lại. Tuy nhiên, do dừng lại nghỉ 3 phút ở sân, Nam phải tăng tốc độ lên 2km/h để kịp về nhà đúng giờ. Hãy tính vận tốc dự định của Nam khi biết quãng đường đi và về đều là 3km. Bài toán thứ hai liên quan đến tam giác cân và đường cao. Chứng minh rằng đoạn thẳng CI bằng tổng độ dài đoạn DH và DK trong tam giác ABC cân tại A. Bài toán cuối cùng đề cập đến hình chữ nhật ABCD và những đường vuông góc trong hình. Chứng minh rằng ba điểm K, E, F thẳng hàng khi biết E, F là trung điểm của hai cạnh AH và CD, và K là điểm cắt của đường vuông góc với BE tại E trên AB. Hy vọng những phân tích chi tiết và cụ thể trên sẽ giúp các em chuẩn bị tốt cho kỳ thi học sinh giỏi Toán THCS sắp tới. Chúc các em học tốt và đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 - 2021 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề thi học sinh giỏi Toán 9 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bắc Ninh. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Cho 19 điểm trong đó không có 3 điểm nào thẳng hàng nằm trong một hình lục giác đều có cạnh bằng 1. Chứng minh rằng luôn tồn tại một tam giác có ít nhất một góc không lớn hơn 450 và nằm trong đường tròn có bán kính nhỏ hơn 3/5. + Cho tam giác ABC vuông tại A AB AC ngoại tiếp đường tròn tâm O. Gọi DEF lần lượt là tiếp điểm của (O) với các cạnh AB AC BC. Đường thẳng BO cắt các đường thẳng EF DF lần lượt tại I K. 1. Tính số đo góc BIF. 2. Giả sử M là điểm di chuyển trên đoạn CE. a. Khi AM = AB, gọi H là giao điểm của BM và EF. Chứng minh rằng ba điểm A O H thẳng hàng. b. Gọi N là giao điểm của đường thẳng BM với cung nhỏ EF của (O); P Q lần lượt là hình chiếu của N trên các đường thẳng DE và DF. Xác định vị trí điểm M để độ dài đoạn thẳng PQ lớn nhất. + Cho phương trình: 2 2 x mx m m 2 6 0 (m là tham số). 1. Tìm m để phương trình có hai nghiệm. 2. Với giá trị nào của m thì phương trình có hai nghiệm 1 x và 2 x sao cho 1 2 x x 8.
Đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 - 2021 sở GDĐT Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán THCS cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Sơn La; kỳ thi được diễn ra vào ngày 14 tháng 03 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 – 2021 sở GD&ĐT Sơn La : + Cho tam giác ABC có góc A tù. Vẽ đường tròn O đường kính AB và đường tròn O’ đường kính AC. Đường thẳng AB cắt đường tròn O’ tại điểm thứ hai là D, đường thẳng AC cắt đường tròn O tại điểm thứ hai là E. a) Chứng minh bốn điểm B C D E cùng nằm trên một đường tròn. b) Gọi F là giao điểm thứ hai của hai đường tròn O và O’ (F khác A). Chứng minh ba điểm B F C thẳng hàng và FA là phân giác của góc EFD. c) Gọi H là giao điểm của AB và EF. Chứng minh BH AD AH BD. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng d y m x m 2 1 2 và parabol P: 2 y x (m là tham số). a) Tìm tọa độ các giao điểm của d và P khi m 2. b) Tìm m để d và P cắt nhau tại hai điểm phân biệt có hoành độ 1 2 x x sao cho biểu thức 2 2 E x x x x 1 2 1 2 đạt giá trị nhỏ nhất. + Cho 3 số thực dương a b c thỏa mãn 2 2 2 1 1 1 1 a b c. Tìm giá trị nhỏ nhất của biểu thức 2 2 2 2 2 2 2 2 2 2 2 2 b c c a a b P.
Đề thi chọn HSG Toán 9 cấp tỉnh năm 2020 - 2021 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Thanh Hóa; kỳ thi được diễn ra vào ngày 16 tháng 12 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn HSG Toán 9 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Thanh Hóa : + Cho đường tròn (I;r) có hai bán kính IE, IF vuông góc với nhau. Kẻ hai tiếp tuyến với đường tròn (I) tại E và F, cắt nhau tại A. Trên tia đối của tia EA lấy điểm B sao cho EB > r, qua B kẻ tiếp tuyến thứ hai với đường tròn (I). D là tiếp điểm, BD cắt tia AF tại C. Gọi K là giao điểm của AI với FD. 1) Chứng minh hai tam giác IAB và FAK đồng dạng. 2) Qua A kẻ đường thẳng vuông góc với BC, cắt FD tại P. Gọi M là trung điểm của AB, MI cắt AC tại Q. Chứng minh tam giác APQ là tam giác cân. 3) Xác định vị trí của điểm B để chu vi tam giác AMQ đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó theo r. + Cho a, b, c là các số thực đôi một khác nhau thỏa mãn 3 3 3 a a b b c c 1 3 1 3 1 3. Tính giá trị biểu thức 2 2 2 Q a b c. + Cho các số thực dương x, y, z thỏa mãn 2 2 x y xyz xy yz zx 4 2. Tính giá trị lớn nhất của biểu thức P x y z 1 1.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 năm học 2020 – 2021 sở GD&ĐT Nam Định; đề thi gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Nam Định : + Trên đường tròn (O) lấy ba điểm A, B, C sao cho tam giác ABC nhọn. Gọi AD, BE, CF là các đường cao của tam giác ABC; đường thẳng EF cắt đường thẳng BC tại P. Qua D kẻ đường thẳng song song với đường thẳng EF cắt đường thẳng AC và AB lần lượt tại Q và R, M là trung điểm của BC. 1) Chứng minh tứ giác BQCR là tứ giác nội tiếp. 2) Chứng minh hai tam giác EPM và DEM đồng dạng. 3) Giả sử BC là dây cung cố định không đi qua tâm O, A di động trên cung lớn BC của đường tròn (O). Chứng minh đường tròn ngoại tiếp tam giác PQR luôn đi qua một điểm cố định. + Cho 2021 số tự nhiên từ 4 đến 2024 trên bảng, mỗi lần thay một hoặc một vài số bởi tổng các chữ số của nó cho đến khi trên bảng chỉ còn lại các số từ 1 đến 9. Hỏi cuối cùng, trên bảng có bao nhiêu số 3, bao nhiêu số 7? + Cho các số thực dương x, y, z thỏa mãn 3 3 3 x y z 24. Tìm giá trị nhỏ nhất của biểu thức 2 2 8 1 xyz x y z M xy yz zx xy yz zx.