Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 10 năm 2018 - 2019 trường Nguyễn Đức Cảnh - Thái Bình

Đề thi HSG Toán 10 năm học 2018 – 2019 trường THPT Nguyễn Đức Cảnh – Thái Bình mã đề 001 gồm 2 trang, đề gồm 20 câu hỏi và bài toán trắc nghiệm (chiếm 6 điểm) và 3 bài toán tự luận (chiếm 4 điểm), thời gian làm bài 90 phút, kỳ thi nhằm tuyển chọn các em học sinh lớp 10 giỏi môn Toán để bổ sung vào đội tuyển HSG Toán 10 của nhà trường. Trích dẫn đề thi HSG Toán 10 năm 2018 – 2019 trường Nguyễn Đức Cảnh – Thái Bình : + 4 người đàn ông cần đi qua một chiếc cầu rất nguy hiểm trong đêm tối. Không may là chỉ có một cây đuốc, không có đuốc thì không thể qua cầu được. Cầu rất yếu nên mỗi lượt đi chỉ được 2 người. Tuy nhiên, thời gian 4 người (A, B, C, D) qua cầu không giống nhau, lần lượt là A – 1 phút, B – 2 phút, C – 7 phút, D – 10 phút. Hỏi thời gian ngắn nhất để 4 người đàn ông qua cầu là bao lâu? [ads] + Bác Thùy dự định trồng đậu và cà trên diện tích 8a (1a = 100m2). Nếu trồng đậu thì cần 20 công và thu lãi 3.000.000 đồng trên mỗi a, nếu trồng cà thì cần 30 công và thu lãi 4.000.000 đồng trên mỗi a. Biết tổng số công cần dùng không được vượt quá 180. Tính số tiền lãi lớn nhất thu được. + Cho hàm số y = f(x) xác có tập xác định là R, xét các hàm số F(x) = 1/2[f(x) + f(-x)] và G(x) = 1/2[f(x) – f(-x)]. Khẳng định nào dưới đây đúng? A. F(x) là hàm số lẻ và G(x) là hàm số chẵn. B. F(x) và G(x) là các hàm số lẻ. C. F(x) và G(x) là các hàm số chẵn. D. F(x) là hàm số chẵn và G(x) là hàm số lẻ.

Nguồn: toanmath.com

Đọc Sách

Đề chọn HSG Toán 10 vòng 1 năm 2020 - 2021 trường THPT Trần Nguyên Hãn - Hải Phòng
Đề chọn HSG Toán 10 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 06 bài toán, thời gian học sinh làm bài thi là 180 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề chọn HSG Toán 10 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng : + Tìm tất cả các giá trị của tham số m để hàm số y = (2m – 1)x2 – 2mx + m + 2 đồng biến trên khoảng (1;+vc). + Cho số thực a < 0 và hai tập hợp A = (-vc;4a); B = [16/a;+vc). Tìm tất cả các giá trị của a để A giao B bằng tập hợp rỗng. + Tìm tất cả các giá trị của tham số m để phương trình (x – m)/(x – 1) + (x – 2)/(x + 1) = 2 vô nghiệm.
Đề chọn đội tuyển Olympic 2021 Toán 10 lần 1 trường chuyên Nguyễn Bỉnh Khiêm - Quảng Nam
Ngày 19 tháng 09 năm 2020, trường THPT chuyên Nguyễn Bỉnh Khiêm, thành phố Tam Kỳ, tỉnh Quảng Nam tổ chức kỳ thi chọn đội dự tuyển Olympic năm 2021 môn Toán lớp 10 lần thi thứ nhất. Đề chọn đội tuyển Olympic 2021 Toán 10 lần 1 trường chuyên Nguyễn Bỉnh Khiêm – Quảng Nam gồm có 08 bài toán, học sinh làm bài trong 150 phút. Trích dẫn đề chọn đội tuyển Olympic 2021 Toán 10 lần 1 trường chuyên Nguyễn Bỉnh Khiêm – Quảng Nam : + Cho tam giác ABC có M là trung điểm của BC. Trên các cạnh AB và AC lần lượt lấy các điểm E và F sao cho AE = AF. Đường trung tuyến AM và đường thẳng EF cắt nhau tại Q. Chứng minh rằng: QE/QF = AC/AB. + Trên bảng cho 2020 số tự nhiên liên tiếp từ 1 đến 2020. Ta thực hiện liên tiếp phép biến đổi sau: mỗi lần biến đổi ta xóa đi hai số bất kì a, b có trên bảng rồi viết thêm số a + b – 1/3ab vào bảng. Khi trên bảng chỉ còn lại đúng một số thì dừng lại. Tìm số còn lại đó. + Cho a, b, c là độ dài ba cạnh của một tam giác, có góc lớn nhất bằng α. Biết rằng a và b là hai nghiệm của phương trình x^2 + 4(c + 2) = (c + 4)x. Tính α.
Đề học sinh giỏi Toán 10 cấp trường năm 2019 - 2020 trường Lưu Hoàng - Hà Nội
Đề học sinh giỏi Toán 10 cấp trường năm học 2019 – 2020 trường THPT Lưu Hoàng – Hà Nội có đáp án và lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán 10 cấp trường năm 2019 – 2020 trường Lưu Hoàng – Hà Nội : + Một chủ hộ kinh doanh có 32 phòng trọ cho thuê. Biết giá cho thuê mỗi tháng là 2.000.000đ/1 phòng trọ, thì không có phòng trống. Nếu cứ tăng giá mỗi phòng trọ lên 200.000đ/1 tháng, thì sẽ có 2 phòng bị bỏ trống. Hỏi chủ hộ kinh doanh sẽ cho thuê với giá là bao nhiêu để có thu nhập mỗi tháng cao nhất? + Cho hàm số y = -x2 + 2(m + 1)x + 1 – m2 (m là tham số). a) Tìm giá trị của m để đồ thị hàm số (1) cắt trục hoành tại hai điểm phân biệt A, B sao cho tam giác KAB vuông tại K, trong đó K(2; -2). b) Tìm giá trị của m để hàm số (1) có giá trị lớn nhất bằng 6. + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 2) và B(4; 3). Tìm tọa độ điểm M nằm trên trục hoành sao cho góc AMB bằng 45 độ.
Đề Olympic Toán 10 năm 2019 cụm trường THPT Hà Đông - Hoài Đức - Hà Nội
giới thiệu đến bạn đọc đề thi Olympic Toán 10 năm học 2018 – 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội, đề gồm 01 trang với 04 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, học sinh có 150 phút để làm bài. Trích dẫn đề Olympic Toán 10 năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội : + Cho tam giác ABC có BC = a, CA = b, AB = c, độ dài ba đường cao kẻ từ đỉnh A, B, C lần lượt là ha, hb, hc. Biết rằng asinA + bsinB + csinC = ha + hb + hc, chứng minh tam giác ABC đều. [ads] + Cho hai tia Ax, By với AB = 100 (cm), góc xAB = 45° và By ⊥ AB. Chất điểm X chuyển động trên tia Ax bắt đầu từ A với vận tốc 3√2 (cm/s), cùng lúc đó chất điểm Y chuyển động trên tia By bắt đầu từ B với vận tốc 4 (cm/s). Sau t (giây) chất điểm X di chuyển đuợc đoạn đường AM, chất điểm Y di chuyển được đoạn đường BN. Tìm giá trị nhỏ nhất của đoạn MN. + Cho phương trình x^4 – 2(m + 2)x^2 + 2m + 3 = 0 (m là tham số). Tìm tất cả các giá trị của tham số m để phương trình có 4 nghiệm phân biệt x1, x2, x3, x4 thỏa mãn x1^2 + x2^2 + x3^2 + x4^2 + = 52.