Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 10 năm 2018 - 2019 trường Nguyễn Đức Cảnh - Thái Bình

Đề thi HSG Toán 10 năm học 2018 – 2019 trường THPT Nguyễn Đức Cảnh – Thái Bình mã đề 001 gồm 2 trang, đề gồm 20 câu hỏi và bài toán trắc nghiệm (chiếm 6 điểm) và 3 bài toán tự luận (chiếm 4 điểm), thời gian làm bài 90 phút, kỳ thi nhằm tuyển chọn các em học sinh lớp 10 giỏi môn Toán để bổ sung vào đội tuyển HSG Toán 10 của nhà trường. Trích dẫn đề thi HSG Toán 10 năm 2018 – 2019 trường Nguyễn Đức Cảnh – Thái Bình : + 4 người đàn ông cần đi qua một chiếc cầu rất nguy hiểm trong đêm tối. Không may là chỉ có một cây đuốc, không có đuốc thì không thể qua cầu được. Cầu rất yếu nên mỗi lượt đi chỉ được 2 người. Tuy nhiên, thời gian 4 người (A, B, C, D) qua cầu không giống nhau, lần lượt là A – 1 phút, B – 2 phút, C – 7 phút, D – 10 phút. Hỏi thời gian ngắn nhất để 4 người đàn ông qua cầu là bao lâu? [ads] + Bác Thùy dự định trồng đậu và cà trên diện tích 8a (1a = 100m2). Nếu trồng đậu thì cần 20 công và thu lãi 3.000.000 đồng trên mỗi a, nếu trồng cà thì cần 30 công và thu lãi 4.000.000 đồng trên mỗi a. Biết tổng số công cần dùng không được vượt quá 180. Tính số tiền lãi lớn nhất thu được. + Cho hàm số y = f(x) xác có tập xác định là R, xét các hàm số F(x) = 1/2[f(x) + f(-x)] và G(x) = 1/2[f(x) – f(-x)]. Khẳng định nào dưới đây đúng? A. F(x) là hàm số lẻ và G(x) là hàm số chẵn. B. F(x) và G(x) là các hàm số lẻ. C. F(x) và G(x) là các hàm số chẵn. D. F(x) là hàm số chẵn và G(x) là hàm số lẻ.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Đan Phượng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội : + Cho a, b, c là các số thực thỏa mãn: a b b c c a 8. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 2 2 2 P a b c. + Viết phương trình đường thẳng đi qua B(4;5) và tạo với đường thẳng 7 8 0 x y một góc 45°. + Cho tứ giác ABCD, AC và BD cắt nhau tại O. Gọi H, K lần lượt là trực tâm của tam giác ABO và CDO. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh rằng HK MN.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Diễn Châu 2 - Nghệ An
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An : + Cho tam giác ABC có trọng tâm G. Gọi E, F là các điểm thỏa mãn AE = 2AB, 5AF = 2AC. Chứng minh ba điểm G, E, F thẳng hàng. + Cho tam giác ABC có ba cạnh a, b, c (với b > c), biết nửa chu vi bằng 10, góc CAB = 60 độ. Bán kính đường tròn nội tiếp tam giác đó bằng 3. Tính độ dài đường trung tuyến ma. + Trong mặt phẳng (Oxy), cho tam giác ABC có A(3;4), trực tâm H(1;3) và tâm đường tròn ngoại tiếp tam giác ABC là I(2;0). Viết phương trình các đường thẳng AH và BC.
Đề thi HSG Toán 10 lần 2 năm 2020 - 2021 trường THPT Đồng Đậu - Vĩnh Phúc
Đề thi HSG Toán 10 lần 2 năm học 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 10 lần 2 năm 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc : + Cho hình chữ nhật ABCD có AB = 2AD, BC = a. Tính giá trị nhỏ nhất của độ dài vectơ u = MA + 2MB + 3MC, trong đó M là điểm thay đổi trên đường thẳng BC. + Cho tam giác ABC vuông tại A, G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC = a và góc giữa hai véc tơ GB và GC là nhỏ nhất. + Cho tam giác ABC cân tại A, nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ADC. Chứng minh rằng OE vuông góc CD.