Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Vũng Tàu BR VT

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Vũng Tàu BR VT Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 năm 2022 – 2023 phòng GD&ĐT Vũng Tàu – BR VT Đề học sinh giỏi Toán lớp 9 năm 2022 – 2023 phòng GD&ĐT Vũng Tàu – BR VT Chúng ta hãy cùng khám phá đề thi chọn học sinh giỏi cấp thành phố môn Toán lớp 9 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo UBND thành phố Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu. Trong đề thi này, có những câu hỏi thú vị như: 1. Xét các số thực dương a, b thay đổi thỏa mãn a + b = ab. Hãy tìm giá trị nhỏ nhất của biểu thức P = 7/4.a + 5/4.b + 4/a + 2/b. 2. Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ đường cao AD của tam giác ABC và đường kính AK của đường tròn (O). Chứng minh ba điểm H, M, K thẳng hàng và tứ giác AMDE nội tiếp. 3. Chứng minh AB/AC = SB/SC trong tam giác ABC. 4. Tia SM cắt (O) tại T. Chứng minh tứ giác ABCT là hình thang cân. 5. Cho 2024 phân số gồm từ 1/2024 đến 2024/2024. Thực hiện thao tác xoá hai số a, b trong dãy và thay vào số a + b – 4ab cho đến khi chỉ còn duy nhất một số, hãy tìm số đó. Hy vọng rằng đề thi này sẽ giúp các em học sinh lớp 9 rèn luyện kỹ năng và chuẩn bị tốt cho các kì thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Nghĩa Đàn Nghệ An
Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Nghĩa Đàn Nghệ An Bản PDF - Nội dung bài viết Đề Học Sinh Giỏi Huyện Lớp 9 Môn Toán Năm 2022 - 2023 Đề Học Sinh Giỏi Huyện Lớp 9 Môn Toán Năm 2022 - 2023 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi tuyển chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Một số câu hỏi thú vị trong đề thi bao gồm: + Chứng minh rằng p^2 - 1 chia hết cho 24 với p là số nguyên tố không nhỏ hơn 5. + Chứng minh không tồn tại số nguyên n sao cho n^2 + 26 là số chính phương. + Trong tam giác vuông ABC tại A, điểm D nằm giữa B và C. Hình chiếu của D lần lượt trên AB và AC là E và F. Hãy chứng minh rằng EB⋅FC = ED⋅FD và S(ABD) = AB⋅AD/2⋅sin(BAD). + Cho 2022 số nguyên dương, chứng minh rằng trong số đó, có ít nhất 505 số bằng nhau nếu có 4 số khác nhau thì chúng phải lập tỷ lệ thức. Đề thi này là cơ hội để các em thể hiện kiến thức và khả năng giải quyết vấn đề trong môn Toán. Chúc quý thầy cô và các em học sinh đạt kết quả tốt trong kỳ thi sắp tới!
Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Lý Nhật Quang Nghệ An (vòng 2)
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Lý Nhật Quang Nghệ An (vòng 2) Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 trường THCS Lý Nhật Quang Nghệ An (vòng 2) năm 2022 - 2023 Đề thi học sinh giỏi Toán lớp 9 trường THCS Lý Nhật Quang Nghệ An (vòng 2) năm 2022 - 2023 Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến bạn đề thi chọn học sinh dự thi học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2022-2023 tại trường THCS Lý Nhật Quang, huyện Đô Lương, tỉnh Nghệ An (vòng 2) với những câu hỏi thú vị và hấp dẫn sau: 1. Cho số nguyên tố P = abc với a, b, c là ba chữ số. Chứng minh rằng phương trình ax2 + bx + c = 0 không có nghiệm hữu tỷ. 2. Có tổng cộng 48 quả cân có khối lượng từ 1g đến 48g. Hãy phân chia tất cả các quả cân đó thành ba nhóm sao cho tổng khối lượng của từng nhóm bằng nhau. 3. Ban Giám hiệu trường THCS Lý Nhật Quang dự định mời 100 đại biểu đến dự sự kiện. Mỗi người trong số đó quen biết ít nhất 50 người khác. Chứng minh rằng Ban Giám Hiệu có thể xếp 4 người vào một bàn tròn sao cho mỗi người ngồi giữa hai người quen của mình. Đây sẽ là một cơ hội tuyệt vời để các em thể hiện tài năng và kiến thức Toán của mình. Chúc các em học tập tốt và thành công trong kỳ thi sắp tới! Xin cám ơn!
Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hai Bà Trưng Hà Nội
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hai Bà Trưng Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán năm 2022 - 2023 phòng GD ĐT Hai Bà Trưng Hà Nội Đề học sinh giỏi lớp 9 môn Toán năm 2022 - 2023 phòng GD ĐT Hai Bà Trưng Hà Nội Chào đón quý thầy cô và các em học sinh lớp 9, hôm nay chúng ta sẽ cùng nhau tìm hiểu về đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo quận Hai Bà Trưng, thành phố Hà Nội. Kỳ thi này sẽ diễn ra vào ngày 18 tháng 10 năm 2022. Trích dẫn một số câu hỏi từ đề thi: 1) Cho tam giác ABC nhọn, không cân (AB < AC), M là trung điểm của BC. Gọi E, F lần lượt là chân các đường vuông góc hạ từ M lên AC, AB (E thuộc AC; F thuộc AB). Chứng minh ME.MP = MF.MQ và MFE = MPQ. 2) Chứng minh tam giác SEF đồng dạng với tam giác SMA và AM vuông góc với PQ. 3) Chứng minh ba điểm P, H, Q thẳng hàng với nhau. 4) Chứng minh rằng a + 2b là số chính phương với điều kiện a, b là số nguyên dương, a và b nguyên tố cùng nhau, và (x2 + y2)/a = xy/b. 5) Tính khả năng để tất cả các con kì nhông trở thành cùng một màu trong đàn gồm 2021 con kì nhông màu xanh, 2022 con kì nhông màu đỏ, và 2023 con kì nhông màu vàng theo quy tắc biến đổi màu của chúng khi gặp nhau. Chúc quý thầy cô và các em học sinh chuẩn bị tốt cho kỳ thi sắp tới. Hãy rèn luyện và tự tin để vượt qua thách thức này!
Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Nghi Thủy Nghệ An
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Nghi Thủy Nghệ An Bản PDF - Nội dung bài viết Đề thi học sinh giỏi môn Toán lớp 9 năm 2022 - 2023 trường THCS Nghi Thủy Đề thi học sinh giỏi môn Toán lớp 9 năm 2022 - 2023 trường THCS Nghi Thủy Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 tại trường THCS Nghi Thủy, huyện Cửa Lò, tỉnh Nghệ An. Đề thi được thiết kế để thử thách và đánh giá năng lực, kiến thức của các em học sinh trên môn Toán, từ đó khuyến khích sự rèn luyện và phát triển năng khiếu Toán học một cách toàn diện. Bài thi sẽ cung cấp cơ hội cho các em học sinh thể hiện khả năng giải quyết vấn đề, tư duy logic và sự sáng tạo. Hy vọng đây sẽ là bước đệm quan trọng để khám phá và phát triển tiềm năng Toán học trong mỗi em học sinh.