Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán TN THPT 2022 lần 1 trường chuyên Hoàng Văn Thụ - Hòa Bình

Đề thi thử Toán TN THPT 2022 lần 1 trường chuyên Hoàng Văn Thụ – Hòa Bình mã đề 101 gồm 07 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), kỳ thi nhằm đánh giá chất lượng và giúp các em học sinh lớp 12 rèn luyện để hướng đến kỳ thi tốt nghiệp Trung học Phổ thông năm học 2021 – 2022 do Bộ Giáo dục và Đào tạo tổ chức. Trích dẫn đề thi thử Toán TN THPT 2022 lần 1 trường chuyên Hoàng Văn Thụ – Hòa Bình : + Trong không gian Ox yz cho điểm A(2;1;-3) và hai mặt phẳng 3 0 Q x y z 2 0 R x y z. Mặt phẳng P đi qua A đồng thời vuông góc với hai mặt phẳng Q R có phương trình là? + Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ t là 2 3 f t t t 45. Nếu xem f t là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ bao nhiêu? + Trong không gian Oxyz cho hai điểm A(4;6;2), B(2;-2;0) và mặt phẳng P x y z 0. Xét đường thẳng d thay đổi thuộc P và đi qua B, gọi H là hình chiếu vuông góc của A trên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Diện tích của hình tròn đó bằng? + Cho hàm số y f x liên tục trên và thỏa mãn f 4 4. Đồ thị hàm số y f x như hình vẽ bên dưới. Để giá trị lớn nhất của hàm số 2 3 2 x h x f x x m trên đoạn (-4;3) không vượt quá 2022 thì tập giá trị của m là? + Có tất cả bao nhiêu giá trị nguyên của y sao cho tương ứng với mỗi y luôn tồn tại không quá 15 số nguyên x thỏa mãn điều kiện?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Quốc gia 2016 môn Toán trường B Nghĩa Hưng - Nam Định lần 2
Đề thi thử THPT Quốc gia 2016 môn Toán trường B Nghĩa Hưng – Nam Định lần 2 có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 8 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số phân thức hữu tỉ. Câu 2: Tìm m để hàm số có cực trị. Câu 3: 1) Tìm số phức liên hợp và mô đun của số phức z. 2) Giải phương trình mũ. Câu 4: Tính tích phân. Câu 5: 1) Lập phương trình mặt phẳng (P) qua A và vuông góc với đường thẳng d. 2) Lập phương trình mặt cầu có tâm I thuộc đường thẳng d, bán kính R = 2 và tiếp xúc với mặt phẳng (P). Câu 6: 1) Tính giá trị của biểu thức lượng giác. 2) Tính xác suất để tổng ba số ghi trên ba thẻ đó là một số lẻ. Câu 7: Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng AB và SC theo a (a>0). Câu 8: Tìm tọa độ các điểm A, B, C. Câu 9: Giải hệ phương trình vô tỉ. Câu 10: Tìm giá trị nhỏ nhất của biểu thức 3 biến P.
Đề thi thử Quốc gia 2016 môn Toán trường Nguyễn Khuyến - TP.HCM
Đề thi thử Quốc gia 2016 môn Toán trường Nguyễn Khuyến – TP.HCM có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 8 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số phân thức hữu tỉ. Câu 2: Tìm m để đồ thị (C) cắt trục hoành tại 4 điểm phân biệt có hoành độ đều nhỏ hơn 2. Câu 3: a) Tính môđun của số phức w. b) Giải phương trình logarit. Câu 4: Tính tích phân. Câu 5: Viết phương trình mặt phẳng (Q) chứa d và vuông góc với mặt phẳng (P). Viết phương trình tham số của đường thẳng d’ là hình chiếu vuông góc của đường thẳng d trên (P). Câu 6: a) Tính giá trị của biểu thức lượng giác. b) Chọn ngẫu nhiên từ hộp 4 quả cầu. Tính xác suất để 4 quả cầu lấy ra có đủ cả ba màu. Câu 7: Tính theo a thể tích khối hộp đã cho và khoảng cách từ điểm D đến mặt phẳng (A’BC). Câu 8: Tính diện tích tứ giác ABKC. Câu 9: Giải hệ phương trình vô tỉ. Câu 10: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 3 biến P.
Đề thi thử THPT Quốc gia 2016 môn Toán trường Bình Sơn - Đồng Nai
Đề thi thử Quốc gia 2016 môn Toán trường Bình Sơn – Đồng Nai có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số trùng phương. Câu 2: a) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn. b) Xác định giá trị của tham số m để hàm số đạt cực đại tại x = -1. Câu 3: a) Tìm phần thực và phần ảo của z. b) Giải phương trình logarit. Câu 4: Tính tích phân. Câu 5: Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng d. Tìm tọa độ giao điểm của d và (P). Câu 6: a) Tính giá trị của biểu thức lượng giác. b) Tính xác suất sao cho tổng các số trên hai thẻ là số chẵn. Câu 7: Tính theo a thể tích của khối chóp S.ABC và khoảng cách giữa hai đường thẳng SI, AC. Câu 8: Tìm tọa độ các đỉnh A, C biết diện tích tam giác ABC bằng 30 và đỉnh A có hoành độ dương. Câu 9: Giải phương trình vô tỉ. Câu 10: Tìm GTNN của biểu thức 3 biến P.
Đề thi thử Quốc gia 2016 môn Toán trường Trương Vĩnh Ký - Bến Tre
Đề thi thử Quốc gia 2016 môn Toán trường Trương Vĩnh Ký – Bến Tre có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số phân thức hữu tỉ. Câu 2: Tìm m để hàm số đạt cực tiểu tại x =1. Câu 3: a) Tìm môđun của số phức w. b) Giải phương trình mũ. Câu 4: Tính tích phân. Câu 5: Viết phương trình mặt cầu (S) có đường kính AB. Chứng minh (S) cắt (P) theo một đường tròn giao tuyến và tính bán kính của đường tròn giao tuyến đó. Câu 6: a) Tính giá trị của biểu thức lượng giác. b) Tìm số hạng không chứa x trong khai triển nhị thức. Câu 7: Tính theo a thể tích khối lăng trụ ABC.A’B’C’ và khoảng cách từ điểm M đến mặt phẳng (BC’N). Câu 8: Xác định tọa độ các đỉnh của tam giác ABC. Câu 9: Giải bất phương trình. Câu 10: Giải hệ phương trình.