Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 11 cấp trường năm 2019 - 2020 trường Nguyễn Đăng Đạo - Bắc Ninh

Nhằm kiểm tra khảo sát chất lượng đội tuyển học sinh giỏi Toán 11, vừa qua, trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh đã tổ chức kỳ thi chọn học sinh giỏi cấp trường môn thi Toán lớp 11 năm học 2019 – 2020. Đề HSG Toán 11 cấp trường năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh gồm có 01 trang với 06 bài toán tự luận, thời gian làm bài 150 phút, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề HSG Toán 11 cấp trường năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2;3). Các điểm I (6;6), J(4;5) lần lượt là tâm đường tròn ngoại tiếp và tâm đường tròn nội tiếp tam giác ABC. Tìm tọa độ các đỉnh B và C biết hoành độ điểm B lớn hơn hoành độ điểm C. [ads] + Có hai cái hộp đựng tất cả 15 viên bi, các viên bi chỉ có 2 màu đen và trắng. Lấy ngẫu nhiên từ mỗi hộp 1 viên bi. Biết số bi ở hộp 1 nhiều hơn hộp 2, số bi đen ở hộp 1 nhiều hơn số bi đen ở hộp 2 và xác suất để lấy được 2 viên đen là 5/28. Tính xác suất để lấy được 2 viên trắng. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = b, cạnh bên SA vuông góc với đáy. a) Gọi I, J lần lượt là trung điểm của SB và CD. Biết đường thẳng IJ tạo với mặt phẳng (ABCD) một góc 60 độ. Tính độ dài đoạn thẳng SA. b) (α) là mặt phẳng thay đổi qua AB và cắt các cạnh SC, SD lần lượt tại M và N. Gọi K là giao điểm của hai đường thẳng AN và BM. Chứng minh rằng biểu thức T = AB/MN – BC/SK có giá trị không đổi.

Nguồn: toanmath.com

Đọc Sách

Đề thi Olympic lớp 11 môn Toán năm 2018 – 2019 trường THPT Kim Liên – Hà Nội
Nội dung Đề thi Olympic lớp 11 môn Toán năm 2018 – 2019 trường THPT Kim Liên – Hà Nội Bản PDF Sytu giới thiệu đến thầy, cô và các em học sinh khối 11 nội dung đề thi Olympic Toán lớp 11 năm 2018 – 2019 trường THPT Kim Liên – Hà Nội, đề thi gồm 01 trang với 06 bài toán tự luận, học sinh làm bài trong 150 phút (không tính khoảng thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi Olympic Toán lớp 11 năm 2018 – 2019 trường THPT Kim Liên – Hà Nội : + Danh sách đăng kí dự thi Olympic cấp trường của lớp 11A trường THPT Kim Liên – Hà Nội có 25 học sinh, mỗi em đăng kí dự thi một môn trong số các môn: Toán, Văn, Tin học, Sinh học, Lịch Sử, Vật lí, Hóa học, Anh và Địa Lí. Trong đó có 6 học sinh đăng kí dự thi môn Toán và 5 học sinh đăng kí dự thi môn Anh. Chọn ngẫu nhiên 3 học sinh trong danh sách trên, tính xác suất để trong 3 học sinh đó có cả học sinh đăng kí dự thi môn Toán và học sinh đăng kí dự thi môn Anh. [ads] + Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng 1. Lấy điểm I thuộc cạnh AB, điểm E thuộc cạnh DD’ sao cho AI = D’E = x (0 < x < 1). a) Chứng minh IE vuông góc với A’C. b) Tìm x để góc giữa hai đường thẳng AC’ và DI bằng 60 độ. c) Gọi M, N lần lượt là trung điểm của các cạnh AB, A’D’. Xác định giao điểm K của mặt phẳng (CMN) với đường thẳng B’C’ và tính tỉ số B’K/B’C’. + Cho số thực a ∈ (0;1) và dãy số (un) xác định bởi: u1 = 1, un+1 = (a.un^3 + a – 1)^1/3, n thuộc N*. a) Gọi (vn) là dãy số xác định bởi vn = un^3 + 1. Chứng minh rằng dãy số (vn) là một cấp số nhân lùi vô hạn. b) Tìm tất cả các giá trị của a biết rằng: lim (u1^2 + u2^3 + … + un^3 + n) = 4.
Đề thi HSG lớp 11 môn Toán năm 2018 2019 trường Phùng Khắc Khoan Hà Nội
Nội dung Đề thi HSG lớp 11 môn Toán năm 2018 2019 trường Phùng Khắc Khoan Hà Nội Bản PDF Nhằm tuyển chọn các em học sinh giỏi Toán lớp 11 để tuyên dương, khen thưởng, làm tấm gương cho các học sinh khác, đồng thời bổ sung vào đội tuyển học sinh giỏi Toán lớp 11 cấp trường, vừa qua, trường THPT Phùng Khắc Khoan – Thạch Thất – Hà Nội đã tiến hành tổ chức kỳ thi học sinh giỏi Toán lớp 11, các em học sinh được chọn trong kỳ thi lần này sẽ được tiếp tục bồi dưỡng để tham dự kỳ thi học sinh giỏi Toán lớp 11 cấp thành phố. Đề thi HSG Toán lớp 11 năm 2018 – 2019 trường Phùng Khắc Khoan – Hà Nội được biên soạn theo hình thức tự luận, đề gồm 1 trang với 5 bài toán, thời gian làm bài thi Toán là 150 phút. [ads] Trích dẫn đề thi HSG Toán lớp 11 năm 2018 – 2019 trường Phùng Khắc Khoan – Hà Nội : + An và Bình thi đấu với nhau một trận bóng bàn có tối đa 5 séc, người nào thắng trước 3 séc sẽ giành chiến thắng chung cuộc. Xác suất An thắng mỗi séc là 0,4 (không có hòa). Tính xác suất để An thắng chung cuộc. + Trong mặt phẳng tọa độ Oxy, cho các điểm A(-2;3), A'(1;5) và B(5;-3), B'(7;-2). Phép quay tâm I(x;y) biến A thành A’ và B thành B’, tính x + y. + Cho a, b, c là ba hằng số và (un) là dãy số được xác định bởi công thức: un = a√(n + 1) + b√(n + 2) + c√(n + 3) (với mọi n thuộc N*). Chứng minh rằng limun = 0 (n tiến đến vô cùng) khi và chỉ khi a + b + c = 0.