Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề một số hệ thức về cạnh và đường cao trong tam giác vuông

Nội dung Chuyên đề một số hệ thức về cạnh và đường cao trong tam giác vuông Bản PDF - Nội dung bài viết Chuyên đề về hệ thức về cạnh và đường cao trong tam giác vuông Chuyên đề về hệ thức về cạnh và đường cao trong tam giác vuông Tài liệu này bao gồm 29 trang, cung cấp tóm tắt lý thuyết, các dạng bài và bài tập chuyên đề về một số hệ thức liên quan đến cạnh và đường cao trong tam giác vuông. Được thiết kế để hỗ trợ học sinh trong quá trình học chương trình Hình học 9 chương 1 bài số 1. A. LÝ THUYẾT: Trong phần này, ta tìm hiểu và lý giải cách chứng minh các hệ thức liên quan đến cạnh và đường cao trong tam giác vuông. Sử dụng định lý Ta-lét và các hệ thức lượng để biến đổi các vế và chứng minh định lý. B. DẠNG BÀI MINH HỌA: I. Bài toán và các dạng bài và phương pháp 1. Dạng 1: Chứng minh hệ thức. Sử dụng định lý Ta-lét và hệ thức lượng để chứng minh. 2. Dạng 2: Tìm độ dài cạnh, số đo góc. Bước 1: Đặt độ dài cạnh, góc bằng ẩn. Bước 2: Lập phương trình chứa ẩn dựa trên giả thiết. Bước 3: Giải phương trình và tìm ẩn số. 3. Dạng 3. Bài toán thực tế liên quan. II. Trắc nghiệm rèn phản xạ: Sau khi ôn tập lí thuyết và dạng bài, học sinh có thể kiểm tra kiến thức của mình qua các câu hỏi trắc nghiệm rèn phản xạ. III. Phiếu bài tự luyện: Để học sinh có thể tự kiểm tra kiến thức và luyện tập, phiếu bài tự luyện cung cấp các bài tập thực hành. IV. Hướng dẫn giải: Cuối cùng, phần hướng dẫn giải sẽ cung cấp lời giải chi tiết cho các bài tập, giúp học sinh hiểu rõ hơn về cách giải các dạng bài.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề bài toán về đường thẳng và parabol
Tài liệu gồm 08 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề bài toán về đường thẳng và parabol trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. Cho đường thẳng d y mx n và Parabol P y ax a 0. Khi đó số giao điểm của d và P bằng đúng số nghiệm của phương trình hoành độ giao điểm 2 ax mx n. Ta có bảng sau: Số giao điểm của d và (P) Biệt thức ∆ của phương trình hoành độ giao điểm của d và (P) Vị trí tương đối của d và (P). 0 ∆ 0 d không cắt P. 1 ∆ 0 d tiếp xúc với P. 2 ∆ 0 d cắt P tại hai điểm phân biệt. B. Bài tập.
Tài liệu Toán 9 chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn
Tài liệu gồm 10 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Góc có đỉnh bên trong đường tròn. Góc BIC nằm bên trong đường tròn (O) được gọi là góc có đỉnh ở bên trong đường tròn. Định lí 1: Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. 2. Góc có đỉnh bên ngoài đường tròn. Các góc có đỉnh nằm bên ngoài đường tròn, các cạnh đều có điểm chung với đường được gọi là góc có đỉnh ở bên ngoài đường tròn. Định lí 2: Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn. B. Bài tập. Dạng 1 : Chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau. Cách giải: Sử dụng hai định lí về số đo của góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn. Dạng 2 : Chứng minh hai đường thẳng song song hoặc vuông góc. Chứng minh đẳng thức cho trước. Cách giải: Áp dụng hai định lí về số đo góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn để có được các góc bằng nhau, cạnh bằng nhau. Từ đó suy ra điều cần chứng minh.
Tài liệu Toán 9 chủ đề góc nội tiếp
Tài liệu gồm 09 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc nội tiếp trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định nghĩa: Góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn gọi là góc nội tiếp. Lưu ý: Cung nằm bên trong góc nội tiếp được gọi là cung bị chắn. 2. Định lý: Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn. 3. Hệ quả: Trong một đường tròn: a) Các góc nội tiếp bằng nhau chắn các cung bằng nhau và ngược lại. b) Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau. c) Góc nội tiếp (nhỏ hơn hoặc bằng 90 độ) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. d) Góc nội tiếp chắn nửa đường tròn là góc vuông. B. Bài tập. Dạng 1 : Chứng minh các góc bằng nhau, các đoạn thẳng bằng nhau. Cách giải: Dùng hệ quả trong phần lý thuyết. Dạng 2 : Chứng minh hai đường thẳng vuông góc, ba điểm thẳng hàng.
Tài liệu Toán 9 chủ đề góc ở tâm và số đo cung
Tài liệu gồm 09 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc ở tâm và số đo cung trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Góc ở tâm. 2. Số đo cung. 3. So sánh hai cung. 4. Khi nào thì sđ AC + sđ BC = sđ AB. B. Bài tập. Dạng 1 : Tính số đo của góc ở tâm, của cung bị chắn. Cách giải: – Đưa về cách tính số đo một góc của tam giác, tam giác. – Để tính số đo của cung nhỏ, ta tính số đo của góc ở tâm tương ứng. – Để tính số đo của cung lớn ta lấy 3600 trừ đi số đo của cung nhỏ. – Sử dụng tỉ số lượng giác của một góc nhọn để tính góc. – Sử dụng quan hệ giữa đường kính và dây. Dạng 2 : Chứng minh hai cung bằng nhau. Cách giải: Để chứng minh hai cung (của một đường tròn) bằng nhau ta chứng minh hai cung này có cùng một số đo.