Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán biến cố và xác suất của biến cố thường gặp

Tài liệu gồm 57 trang được biên soạn bởi thầy giáo Nguyễn Bảo Vương tuyển tập 175 câu hỏi và bài toán trắc nghiệm biến cố và xác suất của biến cố thường gặp trong đề thi Trung học Phổ thông Quốc gia môn Toán, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được phân chia thành các dạng bài riêng biệt tùy thuộc vào đặc điểm và phương pháp giải bài toán đó, tài liệu giúp học sinh học tốt chủ đề tổ hợp và xác suất (Đại số và Giải tích 11 chương 2) và ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán sắp tới. Mục lục tài liệu các dạng toán biến cố và xác suất của biến cố thường gặp: Phần A . Câu hỏi Dạng toán 1 . Mô tả không gian mẫu và mối liên hệ giữa các biến cố. Dạng toán 2 . Các dạng toán về xác suất. Dạng toán 2.1 Sử dụng định nghĩa cổ điển về xác xuất – quy về bài toán đếm (Trang 3). Dạng toán 2.1.1 Bài toán tính xác suất sử dụng định nghĩa cổ điển bằng cách tính trực tiếp số phần tử thuận lợi cho biến cố (Trang 3). A. Một số bài toán chọn vật, chọn người (Trang 3). B. Một số bài toán liên quan đến chữ số (Trang 8). C. Một số bài toán liên quan đến yếu tố sắp xếp (Trang 11). D. Một số bài toán liên quan đến xúc sắc (Trang 12). E. Một số bài toán liên quan đến hình học (Trang 13). F. Một số bài toán đề thi (Trang 15). Dạng toán 2.1.2 Tính xác suất sử dụng định nghĩa cổ điển bằng phương pháp gián tiếp (Trang 15). Dạng toán 2.2 Sử dụng quy tắc tính xác suất (Trang 18). Dạng toán 2.2.1 Sử dụng quy tắc cộng (Trang 18). Dạng toán 2.2.2 Sử dụng quy tắc nhân (Trang 19). Dạng toán 2.2.3 Sử dụng quy tắc cộng và quy tắc nhân (Trang 20). [ads] Phần B . Lời giải tham khảo Dạng toán 1 . Mô tả không gian mẫu và mối liên hệ giữa các biến cố. Dạng toán 2 . Các dạng toán về xác suất. Dạng toán 2.1 Sử dụng định nghĩa cổ điển về xác xuất – quy về bài toán đếm (Trang 23). Dạng toán 2.1.1 Bài toán tính xác suất sử dụng định nghĩa cổ điển bằng cách tính trực tiếp số phần tử thuận lợi cho biến cố (Trang 23). A. Một số bài toán chọn vật, chọn người (Trang 23). B. Một số bài toán liên quan đến chữ số (Trang 30). C. Một số bài toán liên quan đến yếu tố sắp xếp (Trang 36). D. Một số bài toán liên quan đến xúc sắc (Trang 38). E. Một số bài toán liên quan đến hình học (Trang 40). F. Một số bài toán đề thi (Trang 43). Dạng toán 2.1.2 Tính xác suất sử dụng định nghĩa cổ điển bằng phương pháp gián tiếp (Trang 44). Dạng toán 2.2 Sử dụng quy tắc tính xác suất (Trang 49). Dạng toán 2.2.1 Sử dụng quy tắc cộng (Trang 49). Dạng toán 2.2.2 Sử dụng quy tắc nhân (Trang 51). Dạng toán 2.2.3 Sử dụng quy tắc cộng và quy tắc nhân (Trang 53).

Nguồn: toanmath.com

Đọc Sách

Phân dạng và bài tập xác suất của biến cố
Tài liệu gồm 221 trang, bao gồm tóm tắt lý thuyết, phân dạng và bài tập chuyên đề xác suất của biến cố trong chương trình môn Toán lớp 10 GDPT 2018 (chương trình SGK mới). Vấn đề 1. Phương pháp giải toán xác suất của biến cố. Vấn đề 2. Trắc nghiệm xác suất của biến cố (phần 1). Vấn đề 3. Trắc nghiệm xác suất của biến cố (phần 2). Vấn đề 4. Xác suất của biến cố. Vấn đề 5. Xác suất của biến cố VD – VDC.
Chuyên đề xác suất Toán 10 Chân Trời Sáng Tạo
Tài liệu gồm 92 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề xác suất trong chương trình SGK Toán 10 Chân Trời Sáng Tạo (CTST), có đáp án và lời giải chi tiết. BÀI 1 . KHÔNG GIAN MẪU VÀ BIẾN CỐ. BÀI 2 . XÁC SUẤT CỦA BIẾN CỐ. Dạng 1. Mô tả biến cố, không gian mẫu. Dạng 2. Mối liên hệ giữa các biến cố. Dạng 3. Xác định không gian mẫu và biến cố. Dạng 4. Tính xác suất theo định nghĩa cổ điển. Dạng 5. Quy tắc tính xác suất.
Chuyên đề một số yếu tố thống kê và xác suất Toán 10 Cánh Diều
Tài liệu gồm 169 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề một số yếu tố thống kê và xác suất trong chương trình SGK Toán 10 Cánh Diều (viết tắt: Toán 10 CD), có đáp án và lời giải chi tiết. BÀI 1 . SỐ GẦN ĐÚNG. SAI SỐ. + Dạng 1. Tính sai số tuyệt đối, độ chính xác của một số gần đúng. + Dạng 2. Sai số tương đối của số gần đúng. + Dạng 3. Quy tròn số gần đúng. + Dạng 4. Xác định các chữ số chắc của một số gần đúng, dạng chuẩn của chữ số gần đúng và kí hiệu khoa học của một số. BÀI 2 . CÁC SỐ ĐẶC TRƯNG ĐO XU THẾ TRUNG TÂM CHO MẪU SỐ LIỆU KHÔNG GHÉP NHÓM. BÀI 3 . CÁC SỐ ĐẶC TRƯNG ĐO ĐỘ PHÂN TÁN CHO MẪU SỐ LIỆU KHÔNG GHÉP NHÓM. BÀI 4 + BÀI 5 . XÁC SUẤT CỦA BIẾN CỐ TRONG MỘT SỐ TRÒ CHƠI ĐƠN GIẢN. XÁC SUẤT CỦA BIẾN CỐ. + Dạng 1. Mô tả biến cố, không gian mẫu. + Dạng 2. Mối liên hệ giữa các biến cố. + Dạng 3. Xác định không gian mẫu và biến cố. + Dạng 4. Tính xác suất theo định nghĩa cổ điển. + Dạng 5. Quy tắc tính xác suất.
Chuyên đề tính xác suất theo định nghĩa cổ điển Toán 10 KNTTvCS
Tài liệu gồm 94 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề tính xác suất theo định nghĩa cổ điển trong chương trình SGK Toán 10 Kết Nối Tri Thức Với Cuộc Sống (KNTTvCS), có đáp án và lời giải chi tiết. Bài 26 – 27 . Biến cố và định nghĩa cổ điển của xác suất. 1. Lý thuyết. 2. Hệ thống bài tập tự luận. Dạng 1. Mô tả biến cố, không gian mẫu. Dạng 2. Mối liên hệ giữa các biến cố. Dạng 3. Xác định không gian mẫu và biến cố. + Phương pháp 1. Liệt kê các phần tử của không gian mẫu và biến cố rồi đếm. + Phương pháp 2. Sử dụng các quy tắc đếm, các kiến thức về hoán vị, chỉnh hợp, tổ hợp để xác định số phần tử của không gian mẫu và biến cố. Dạng 4. Tính xác suất theo định nghĩa cổ điển. + Tính xác suất theo thống kê ta sử dụng công thức. P(A) = n/N. + Tính xác suất của biến cố theo định nghĩa cổ điển ta sử dụng công thức. P(A) = n(A)/n(O) = |OA|/|O|. Dạng 5. Quy tắc tính xác suất. 3. Hệ thống bài tập trắc nghiệm.