Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu luyện thi vào lớp 10 môn Toán phần Đại số - Vũ Xuân Hưng

Tài liệu gồm 141 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng, tổng hợp kiến thức cần nhớ, các dạng bài tập và hướng dẫn giải, tuyển chọn các bài tập từ cơ bản đến nâng cao các chủ đề Đại số bậc THCS, giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHUYÊN ĐỀ 1 – BIỂU THỨC CHỨA CĂN BẬC HAI. I – KIẾN THỨC CẦN NHỚ. 1. Định nghĩa căn bậc hai. 2. Các công thức vận dụng. 3. Định nghĩa căn bậc ba. 4. Tính chất của căn bậc ba. II – CÁC DẠNG BÀI TẬP CƠ BẢN. Dạng 1: Tìm điều kiện để biểu thức có nghĩa. Dạng 2: Căn bậc hai số học. Dạng 3: Tính giá trị của biểu thức. Dạng 4: Phân tích đa thức thành nhân tử. Dạng 5: Tìm x. Dạng 6: So sánh. Dạng 7: Rút gọn biểu thức và các bài tập liên quan đến rút gọn. III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 2 – HÀM SỐ BẬC NHẤT. I – KIẾN THỨC CẦN NHỚ. 1. Hàm số bậc nhất. 1.1 – Khái niệm hàm số bậc nhất. 1.2 – Tính chất. 1.3 – Đồ thị của hàm số y = ax + b (a khác 0). 1.4 – Cách vẽ đồ thị hàm số y = ax + b (a khác 0). 1.5 – Vị trí tương đối của hai đường thẳng. 1.6 – Hệ số góc của đường thẳng y = ax + b (a khác 0). II – CÁC DẠNG BÀI TẬP CƠ BẢN. Dạng 1: Xác định hàm số đã cho là hàm đồng biến – nghịch biến. Dạng 2: Vẽ đồ thị của hàm số bậc nhất và các bài toán liên quan. Dạng 3: Tìm m để hai đường thẳng cắt nhau, song song, trùng nhau. Dạng 4: Xác định hàm số bậc nhất. Dạng 5: Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng lớn nhất, nhỏ nhất. Dạng 6: Xác định tham số m để đồ thị hàm số y = f(x;m) thỏa mãn một điều kiện cho trước. Dạng 7: Chứng minh 3 điểm thẳng hàng. Dạng 8: Tìm m để 3 đường thẳng đồng quy (cùng đi qua một điểm). III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 3 – HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN SỐ. I – KIẾN THỨC CẦN NHỚ. 1. Giải hệ phương trình bằng phương pháp thế. 2. Giải hệ phương trình bằng phương pháp cộng đại số. II – CÁC DẠNG BÀI TẬP CƠ BẢN. Dạng 1: Giải hệ phương trình bằng phương pháp thế. Dạng 2: Giải hệ phương trình bằng phương pháp cộng đại số. Dạng 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng 4: Xác định giá trị tham số m để hệ phương trình vô nghiệm. Dạng 5: Xác định giá trị tham số m để hệ phương trình đã cho có nghiệm duy nhất, tìm nghiệm duy nhất đó. Dạng 6: Tìm nghiệm x, y có chứa tham số m sau đó tìm GTLN hoặc GTNN của biểu thức cho trước. Dạng 7: Hệ phương trình chứa dấu giá trị tuyệt đối. III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 4 – HÀM SỐ Y = AX2 (A KHÁC 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. I. Hàm số y = ax2 (a khác 0). II. Phương trình bậc hai một ẩn. 1. Định nghĩa: Phương trình bậc hai một ẩn là phương trình có dạng. 2. Công thức nghiệm của phương trình bậc hai. 3. Công thức nghiệm thu gọn. 4. Hệ thức Vi-et và ứng dụng. III. Các dạng bài tập cơ bản. IV. Bài tập áp dụng. CHUYÊN ĐỀ 5 – GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH. I – KIẾN THỨC CẦN NHỚ. 1. Phương pháp chung. 2. Một số dạng toán thường gặp. II – BÀI TẬP MINH HỌA. Dạng 1: Bài toán hình học. Dạng 2: Bài toán tìm số. Dạng 3: Bài toán dân số, phần trăm. Dạng 4: Bài toán năng suất. Dạng 5: Bài toán chung – riêng. Dạng 6: Bài toán chuyển động. Dạng 7: Bài toán thực tế vận dụng. III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 6 – BẤT ĐẲNG THỨC – TÌM GIÁ TRỊ MIN – MAX CỦA BIỂU THỨC. I – KIẾN THỨC CẦN NHỚ. 1. Phương pháp chung. 2. Phương pháp riêng. 2.1. Sử dụng một số bất đẳng thức cổ điển thông dụng. 2.2. Bất đẳng thức Cauchy (Cosi). 2.3. Bất đẳng thức Bunhiacopski. 2.4. Bất đẳng thức Trê-B-Sép. II – BÀI TẬP MINH HỌA.

Nguồn: toanmath.com

Đọc Sách

Các bài toán về nguyên lý Dirichlet trong số học
Nội dung Các bài toán về nguyên lý Dirichlet trong số học Bản PDF - Nội dung bài viết Các bài toán về nguyên lý Dirichlet trong số học Các bài toán về nguyên lý Dirichlet trong số học Được trích đoạn từ cuốn sách "Các bài toán về nguyên lý Dirichlet trong số học", tài liệu này bao gồm 26 trang các bài toán liên quan đến nguyên lý Dirichlet trong số học. Những bài toán này thường liên quan đến việc tìm kiếm nguyên hàm của một hàm số với điều kiện ban đầu cho trước, và có ứng dụng rất rộng rãi trong lĩnh vực toán học, khoa học máy tính và các ngành liên quan khác. Cuốn sách này cung cấp cái nhìn tổng quan về nguyên lý Dirichlet và giúp độc giả hiểu rõ hơn về cách áp dụng nguyên lý này vào các bài toán cụ thể.
Các bài toán về phần nguyên trong số học
Nội dung Các bài toán về phần nguyên trong số học Bản PDF - Nội dung bài viết Các bài toán về phần nguyên trong số học Các bài toán về phần nguyên trong số học Tài liệu này bao gồm 33 trang và được trích đoạn từ cuốn sách về các bài toán liên quan đến phần nguyên trong số học. Những vấn đề này thường liên quan đến việc làm tròn số, phân tích số nguyên, và tính toán các phép toán cơ bản trên số nguyên. Qua việc nghiên cứu tài liệu này, người đọc sẽ hiểu rõ hơn về cách thức giải quyết các vấn đề liên quan đến phần nguyên và áp dụng chúng vào thực tế.
Các bài toán về phương trình nghiệm nguyên
Nội dung Các bài toán về phương trình nghiệm nguyên Bản PDF - Nội dung bài viết Các bài toán về phương trình nghiệm nguyên Các bài toán về phương trình nghiệm nguyên Tài liệu này bao gồm 405 trang và được trích từ một cuốn sách chuyên về các bài toán liên quan đến phương trình nghiệm nguyên. Trong tài liệu này, các bài toán được trình bày một cách chi tiết và cụ thể, giúp người đọc dễ hiểu và áp dụng vào thực tế. Bạn sẽ tìm thấy nhiều cách tiếp cận và giải quyet cho các bài toán khó khăn trong lĩnh vực này, từ cơ bản đến nâng cao. Việc tìm hiểu và áp dụng kiến thức từ tài liệu này sẽ giúp bạn nâng cao kỹ năng giải quyet các bài toán liên quan đến phương trình nghiệm nguyên một cách hiệu quả.
Ứng dụng đồng dư thức trong giải toán số học
Nội dung Ứng dụng đồng dư thức trong giải toán số học Bản PDF - Nội dung bài viết Đồng dư thức trong giải toán số học Đồng dư thức trong giải toán số học Ứng dụng đồng dư thức trong giải toán số học là một công cụ mạnh mẽ giúp học sinh hiểu và giải quyết các bài toán liên quan đến số học một cách hiệu quả. Tài liệu này gồm 32 trang, được trích đoạn từ cuốn sách chuyên ngành với nhiều ví dụ và bài tập cụ thể, giúp học sinh nắm vững kiến thức và áp dụng vào thực tế. Việc áp dụng đồng dư thức vào giải toán số học không chỉ giúp gia tăng kiến thức mà còn rèn luyện kỹ năng suy luận và logic của học sinh, giúp họ trở thành những học sinh giỏi và tự tin khi giải các bài toán phức tạp.