Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề mặt nón, mặt trụ và mặt cầu

Nối tiếp chuyên đề khối đa diện mà đã đăng tải từ trước đó, thầy Nguyễn Văn Vinh và thầy Lê Đình Hùng  (Omega Group) tiếp tục chia sẻ tài liệu chuyên đề mặt nón, mặt trụ và mặt cầu, giúp học sinh học tốt chương trình Hình học 12 chương 2 và ôn thi THPT Quốc gia môn Toán. Khái quát nội dung tài liệu chuyên đề mặt nón, mặt trụ và mặt cầu: BÀI 1 : MẶT NÓN – HÌNH NÓN – KHỐI NÓN. 1. Lý thuyết + Mặt tròn xoay. + Mặt nón, hình nón và khối nón tròn xoay. + Các công thức tính diện tích và thể tích của hình nón. + Thiết diện của mặt phẳng với hình nón. 2. Bài tập + Bài toán 1. Tính diện tích – thể tích hình nón, khối nón. + Bài toán 2. Các bài toán về thiết diện của mặt phẳng qua đỉnh của hình nón. + Bài toán 3. Hình nón ngoại tiếp, nội tiếp hình chóp đều. + Bài toán 4. Bài toán hình nón cụt. [ads] BÀI 2 : MẶT TRỤ TRÒN XOAY. 1. Lý thuyết + Định nghĩa mặt trụ tròn xoay. + Hình trụ tròn xoay và khối trụ tròn xoay. + Thiết diện của mặt phẳng với hình trụ. + Các công thức tính diện tích và thể tích của hình trụ. 2. Bài tập + Bài toán 1. Thể tích của tứ diện tạo bởi hai đường kính chéo nhau nằm ở hai đáy. + Bài toán 2. Góc giữa đường thẳng nối hai tâm và đường thẳng nối hai điểm trên hai đường tròn của đáy. + Bài toán 3. Khoảng cách giữa đường thẳng nối hai tâm của đáy và đường thẳng nối hai điểm trên hai đường tròn của đáy. + Bài toán 4. Thể tích của khối trụ ngoại tiếp hình lăng trụ tam giác đều có thể tích là V. + Bài toán 5. Diện tích xung quanh của hình trụ khi nội tiếp trong hình lăng trụ tứ giác đều có diện tích xung quanh là S. + Bài toán 6. Mối liên hệ giữa diện tích xung quanh, toàn phần và thể tích khối trụ trong bài toán tối ưu. BÀI 3 : MẶT CẦU VÀ KHỐI CẦU. 1. Lý thuyết + Định nghĩa mặt cầu và khối cầu. + Đường kinh tuyến và vĩ tuyến của mặt cầu. + Vị trí tương đối giữa mặt cầu và mặt phẳng. + Vị trí tương đối giữa mặt cầu và đường thẳng. + Diện tích và thể tích của mặt cầu. + Mặt cầu ngoại tiếp và nội tiếp hình đa diện, hình trụ và hình nón. 2. Bài tập + Bài toán 1. Mặt cầu ngoại tiếp hình hộp chữ nhật, hình lập phương. + Bài toán 2. Mặt cầu ngoại tiếp hình lăng trụ đứng có đáy nội tiếp được trong đường tròn. + Bài toán 3. Mặt cầu ngoại tiếp hình chóp có các đỉnh nhìn đoạn thẳng nối hai đỉnh còn lại dưới một góc vuông. + Bài toán 4. Mặt cầu ngoại tiếp hình chóp đều. + Bài toán 5. Mặt cầu ngoại tiếp hình chóp có một cạnh bên vuông góc với đáy. + Bài toán 6. Mặt cầu ngoại tiếp hình chóp có một mặt bên vuông góc với đáy.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề mặt nón - mặt trụ - mặt cầu - Trần Đình Cư
Tài liệu gồm 58 trang với lý thuyết và bài tập trắc nghiệm chủ đề mặt nón, mặt trụ và mặt cầu, các bài tập đều có đáp án và lời giải chi tiết. HÌNH NÓN, MẶT NÓN, KHỐI NÓN 1. Định nghĩa mặt nón Cho đường thẳng Δ. Xét một đường thẳng d cắt Δ tại O và không vuông góc với Δ. Mặt tròn xoay sinh bởi đường thẳng d như thế khi quay quanh Δ gọi là mặt nón tròn xoay (hay đơn giản là mặt nón). 2. Hình nón tròn xoay Cho ΔOIM vuông tại I quay quanh cạnh góc vuông OI thì đường gấp khúc OIM tạo thành một hình, gọi là hình nón tròn xoay (gọi tắt là hình nón). 3. Công thức diện tích và thể tích của hình nón Cho hình nón có chiều cao là h, bán kính đáy r và đường sinh là l thì có: Diện tích xung quanh: Sxq=π.r.l Diện tích đáy (hình tròn): Sd = πr^2 Diện tích toàn phần hình tròn: S = Sd + Sxq Thể tích khối nón: V = 1/3.π.r^2.h 4. Tính chất [ads] MẶT TRỤ – HÌNH TRỤ VÀ KHỐI TRỤ 1. Mặt trụ Mặt trụ là hình tròn xoay sinh bởi đường thẳng l khi xoay quanh đường thẳng song song và cách l một khoảng R. Lúc đó, được gọi là trục, R gọi là bán kính, l gọi là đường sinh. Mặt trụ là tập hợp tất cả những điểm cách đường thẳng cố định một khoảng R không đổi. 2. Hình trụ Hình trụ là hình giới bạn bởi mặt trụ và hai đường tròn bằng nhau, là giao tuyến của mặt trụ và 2 mặt phẳng vuông góc với trục. Hình trụ là hình tròn xoay khi sinh bởi bốn cạnh của hình một hình chữ nhật khi quay xung quanh một đường trung bình của hình chữ nhật đó. 3. Khối trụ Khối trụ là hình trụ cùng với phần bên trong của hình trụ đó. MẶT CẦU – HÌNH CẦU VÀ KHỐI CẦU 1. Định nghĩa và các khái niệm 2. Vị trí tương đối giữa mặt cầu và mặt phẳng 3. Một sô dạng mặt cầu ngoại tiếp thường gặp Dạng 1. Hình chóp có các đỉnh nhìn hai đỉnh còn lại dưới 1 góc vuông Dạng 2. Hình chóp có các cạnh bên bằng nhau Dạng 3. Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy Dạng 4. Mặt cầu ngoại tiếp hình chóp có mặt bên vuông góc với mặt đáy
Phương pháp giải nhanh bài toán mặt cầu ngoại tiếp hình chóp - Hoàng Trọng Tấn
Tài liệu Phương pháp giải nhanh bài toán mặt cầu ngoại tiếp hình chóp – Hoàng Trọng Tấn gồm 10 trang với các công thức giải nhanh kèm theo ví dụ minh họa và 27 bài toán trắc nghiệm áp dụng. Loại 1: Hình chóp có các đỉnh nhìn đoạn thẳng nối 2 đỉnh còn lại dưới 1 góc vuông Gọi d là độ dài đoạn thẳng trên thì ta có bán kính mặt cầu ngoại tiếp là: R = d/2 Loại 2 : Hình chóp đều Gọi h là độ cao hình chóp và k là chiều dài cạnh bên thì ta có bán kính mặt cầu là: R = k^2/2h [ads] Loại 3 : Hình chóp có cạnh bên vuông góc với đáy Gọi h là chiều cao hình chóp và Rđ là bán kính của đáy thì bán kính mặt cầu: R = √(Rđ^2 + (h/2)^2) Loại 4: Hình chóp có mặt bên vuông góc với đáy Gọi h là chiều cao hình chóp và Rb, Rđ là bán kính của mặt bên, mặt đáy, GT là độ dài giao tuyến của mặt bên và đáy thì bán kính mặt cầu: R = √(Rb^2 + Rđ^2 – GT^2/4) Bài tập vận dụng
Tuyển tập các bài toán hình học không gian - Châu Ngọc Hùng
Tuyển tập các bài toán hình học không gian được phân dạng theo khối hình, tài liệu gồm 75 trang do thầy Châu Ngọc Hùng biên soạn. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi; hai đường chéo AC = 2√3a, BD = 2a và cắt nhau tại O; hai mặt phẳng (S AC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm O đến mặt phẳng (S AB) bằng a = √3/4, tính thể tích khối chóp S.ABCD theo a. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng S A và mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD, biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho lăng trụ tam giác ABC.A1B1C1 có tất cả các cạnh bằng a, góc tạo bởi cạnh bên và mặt đáy bằng 30 độ. Hình chiếu vuông góc H của đỉnh A trên mặt phẳng (A1B1C1) thuộc đường thẳng B1C1. Tính thể tích khối lăng trụ ABC.A1B1C1 và tính khoảng cách giữa hai đường thẳng AA1 và B1C1 theo a.
Chuyên đề hình học không gian 2016 - Trần Quốc Nghĩa
Tài liệu chuyên đề hình học không gian 2016 do thầy Trần Quốc Nghĩa biên soạn gồm 2 phần: Phần 1: Tổng hợp các kiến thức hình học không gian, bao gồm: Các phương pháp chứng minh cơ bản trong hình học không gian 1. Chứng minh đường thẳng d song song mp(α) (d ⊄ (α)) 2. Chứng minh mp(α) song song với mp(β) 3. Chứng minh hai đường thẳng song song 4. Chứng minh đường thẳng d vuông góc với mặt phẳng (α) 5. Chứng minh hai đường thẳng d và d’ vuông góc 6. Chứng minh hai mặt phẳng (α) và (β) vuông góc [ads] Các công thức tính thường được sử dụng Cách vẽ và xác định các yếu tố góc, khoảng cách trong các khối đa diện thường gặp 1. Hình chóp S.ABCD, có đáy ABCD là hình chữ nhật (hoặc hình vuông) và SA vuông góc với đáy 2. Hình chóp S.ABCD, có đáy ABCD là hình thang vuông tại A và B và SA vuông góc với đáy 3. Hình chóp tứ giác đều S.ABCD 4. Hình chóp S.ABC, SA vuông góc với đáy 5. Hình chóp tam giác đều S.ABC 6. Hình chóp S.ABC có một mặt bên (SAB) vuông góc với đáy (ABCD) 7. Hình chóp S.ABCD có một mặt bên (SAB) vuông góc với đáy (ABCD) và ABCD là hình chữ nhật hoặc hình vuông 8. Hình lăng trụ 9. Mặt cầu ngoại tiếp hình chóp Phần 2: Tổng hợp 150 bài toán hình học không gian trong các đề thi thử 2016.