Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 8 môn Toán năm 2015 2016 phòng GD ĐT Triệu Sơn Thanh Hóa

Nội dung Đề thi học sinh giỏi lớp 8 môn Toán năm 2015 2016 phòng GD ĐT Triệu Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm 2015 - 2016 phòng GD&ĐT Triệu Sơn Thanh Hóa Đề thi học sinh giỏi Toán lớp 8 năm 2015 - 2016 phòng GD&ĐT Triệu Sơn Thanh Hóa Đề thi học sinh giỏi Toán lớp 8 năm 2015 – 2016 của phòng GD&ĐT Triệu Sơn Thanh Hóa là một bài thi có độ khó cao, đòi hỏi thí sinh phải có kiến thức và kỹ năng giải quyết vấn đề tốt. Kỳ thi diễn ra vào ngày 13 tháng 04 năm 2016 với nhiều câu hỏi thú vị và thách thức. Một số câu hỏi tiêu biểu trong đề thi: + Với mỗi số tự nhiên n, đặt an = 3n^2 + 6n + 13. Thí sinh cần chứng minh rằng nếu hai số ai, aj không chia hết cho 5 và có số dư khác nhau khi chia cho 5 thì ai + aj chia hết cho 5. Ngoài ra cần tìm tất cả các số tự nhiên n lẻ sao cho an là số chính phương. + Trong tam giác ABC, điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho BD = CE. Gọi I, K, M, N lần lượt là trung điểm của BE, CD, BC, DE. Thí sinh cần phân tích và chứng minh

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Yên Phong - Bắc Ninh
Đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Yên Phong – Bắc Ninh có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 14 tháng 04 năm 2014. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Yên Phong – Bắc Ninh : + Cho hình thang ABCD vuông tại A và D. Biết CD = 2AB = 2AD và BC = a2. Gọi E là trung điểm của CD. a. Tứ giác ABED là hình gì? Tại sao? b. Tính diện tích hình thang ABCD theo a. c. Gọi I là trung điểm của BC, H là chân đường vuông góc kẻ từ D xuống AC. Tính góc HDI? + Cho biểu thức. a. Rút gọn biểu thức A. b. Tìm các giá trị nguyên của x để biểu thức A nhận giá trị nguyên. c. Tìm x để A. + Phần dành cho thí sinh trường đạị trà: Cho a, b, c là 3 cạnh của tam giác, p là nửa chu vi. Phần dành cho thí sinh trường THCS Yên Phong: Cho a, b, c, d là các số dương. Chứng minh rằng.
Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Chứng minh rằng số có dạng 43 2 An n n n 6 11 6 chia hết cho 24 với mọi số tự nhiên n. + Đa thức f(x) khi chia cho x 1 dư 4, khi chia cho 2x 1 dư 2 3 x. Tìm phần dư khi chia f(x) cho 2 1 1 x x. + Cho hình vuông ABCD cạnh a, lấy điểm M bất kỳ trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng DC tại K. 1. Chứng minh KM vuông góc với DB. 2. Chứng minh rằng: KC.KD = KH.KB. 3. Ký hiệu ABM DCM S S lần lượt là diện tích các tam giác ABM và DCM. a) Chứng minh tổng ABM DCM S S không đổi. b) Xác định vị trí của điểm M trên cạnh BC để 2 2 ABM DCM S S đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó theo a.