Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập hàm số và đồ thị Toán 8 Chân Trời Sáng Tạo

Tài liệu gồm 118 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bỉnh Khôi, phân dạng và tuyển chọn các bài tập chuyên đề hàm số và đồ thị trong chương trình môn Toán 8 bộ sách Chân Trời Sáng Tạo, có đáp án và lời giải chi tiết. MỤC LỤC : Chương 5 HÀM SỐ VÀ ĐỒ THỊ 2. Bài 1 KHÁI NIỆM HÀM SỐ 2. A. Trọng tâm kiến thức 2. 1 Khái niệm hàm số 2. 2 Giá trị của hàm số 2. B. Các dạng bài tập 2. + Dạng 1 Hàm số, bảng giá trị của hàm số 2. + Dạng 2 Tính giá trị của hàm số khi biết giá trị của biến số, và ngược lại 4. + Dạng 3 Vận dụng 6. C. Bài tập vận dụng 8. Bài 2 KHÁI NIỆM HÀM SỐ VÀ ĐỒ THỊ CỦA HÀM SỐ 14. A. Trọng tâm kiến thức 14. 1 Tọa độ của một điểm 14. 2 Xác định một điểm trên mặt phẳng tọa độ khi biết tọa độ của nó 14. 3 Đồ thị của hàm số 15. B. Các dạng bài tập 15. + Dạng 1 Đọc, biểu diễn toạ độ điểm trên mặt phẳng toạ độ 15. + Dạng 2 Vẽ đồ thị hàm số cho bởi bảng giá trị 17. + Dạng 3 Xác định khoảng cách giữa hai điểm trên mặt phẳng tọa độ 20. + Dạng 4 Điểm thuộc đồ thị, điểm không thuộc đồ thị của hàm số 22. C. Bài tập vận dụng 23. Bài 3 HÀM SỐ BẬC NHẤT y = ax + b (a khác 0) 37. A. Trọng tâm kiến thức 37. 1 Hàm số bậc nhất, bảng giá trị 37. 2 Đồ thị của hàm số bậc nhất 37. B. Các dạng bài tập 37. + Dạng 1 Hàm số bậc nhất, giá trị của hàm số bậc nhất 37. + Dạng 2 Vẽ đồ thị hàm số bậc nhất 39. + Dạng 3 Điểm thuộc đường thẳng Điểm không thuộc đường thẳng 45. + Dạng 4 Xác định đường thẳng 46. + Dạng 5 Vận dụng 47. C. Bài tập vận dụng 49. Bài 4 HỆ SỐ GÓC CỦA ĐƯỜNG THẲNG 60. A. Trọng tâm kiến thức 60. 1 Hệ số góc của đường thẳng 60. 2 Đường thẳng song song và đường thẳng cắt nhau 60. B. Các dạng bài tập 60. + Dạng 1 Nhận diện hệ số góc Xác định đường thẳng biết hệ số góc 60. + Dạng 2 Nhận dạng cặp đường thẳng song song với nhau, cặp đường thẳng cắt nhau, cặp đường thẳng. vuông góc với nhau 62. + Dạng 3 Bài toán tham số liên quan đến hệ số góc của đường thẳng 64. + Dạng 4 Xác định đường thẳng với quan hệ song song 65. + Dạng 5 Xác định đường thẳng với quan hệ vuông góc 66. C. Bài tập vận dụng 68. LUYỆN TẬP CHUNG 77. A. Hàm số bậc nhất 77. B. Tìm hệ số góc của đường thẳng 82. C. Xác định vị trí tương đối giữa hai đường thẳng 83. D. Tìm m để đồ thị hàm số thoả mãn điều kiện về vị trí tương đối 90. ÔN TẬP CHƯƠNG V 102. A. Bài tập trắc nghiệm 102. B. Bài tập tự luận 108.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hình lăng trụ đứng
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình lăng trụ đứng, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. A. Bài giảng củng cố kiến thức nền 1. Hình lăng trụ đứng. 2. Thí dụ. B. Phương pháp giải toán C. Phiếu bài tự luyện
Chuyên đề hình hộp chữ nhật
Tài liệu gồm 12 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình hộp chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. A. Bài giảng củng cố kiến thức nền 1. Hình hộp chữ nhật. 2. Mặt phẳng và đường thẳng. 3. Hai đường thẳng song song trong không gian. 4. Đường thẳng song song với mặt phẳng. Hai mặt phẳng song song. B. Phương pháp giải toán Dạng toán 1: Chứng minh các tính chất của hình hộp chữ nhật. Dạng toán 2: Tính toán các yếu tố của hình hộp chữ nhật.
Hướng dẫn ôn tập giữa kì 2 Toán 8 năm 2020 - 2021 trường Vinschool - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề cương hướng dẫn ôn tập giữa kì 2 Toán 8 năm học 2020 – 2021 trường Vinschool – Hà Nội, nhằm giúp các em rèn luyện, chuẩn bị cho kỳ kiểm tra khảo sát chất lượng môn Toán 8 giai đoạn giữa học kỳ 2 năm học 2020 – 2021. I. KIẾN THỨC TRỌNG TÂM Phương trình bậc nhất một ẩn: – Phương trình một ẩn, nghiệm của phương trình, giải phương trình, phương trình tương đương. – Phương trình bậc nhất một ẩn và cách giải. – Phương trình đưa được về dạng ax + b = 0. – Phương trình tích. – Phương trình chứa ẩn ở mẫu (dạng toán chuyển động, dạng toán có nội dung số học, dạng toán năng suất, dạng toán có nội dung hình học). Định lý Ta let – Tính chất đường phân giác của tam giác: – Định lý Talet thuận và đảo. – Hệ quả định lý Talet. – Tính chất đường phân giác của tam giác. Tam giác đồng dạng: – Khái niệm hai tam giác đồng dạng. – Các trường hợp đồng dạng của tam giác. II. BÀI TẬP TỰ LUẬN Dạng 1. Giải phương trình. Dạng 2. Giải toán bằng cách lập phương trình. Dạng 3. Hình học tổng hợp. Dạng 4. Nâng cao.
Chuyên đề các trường hợp đồng dạng của tam giác vuông
Tài liệu gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề các trường hợp đồng dạng của tam giác vuông, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT 1. Áp dụng các trường hợp đồng dạng của tam giác vào tam giác vuông. Hai tam giác vuông đồng dạng với nhau nếu: + Tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia. + Tam giác vuông này có hai cạnh góc vuông tỉ lệ với hai cạnh góc vuông của tam giác vuông kia. 2. Dấu hiệu đặc biệt nhận biết hai tam giác vuông đồng dạng. Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng. 3. Tỉ số hai đường cao, trung tuyến, phân giác của hai tam giác đồng dạng. + Tỉ số hai đường cao tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. + Tỉ số hai đường trung tuyến tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. + Tỉ số hai đường phân giác tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. 4. Tỉ số diện tích của hai tam giác đồng dạng. Tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Chứng minh hai tam giác vuông đồng dạng. Phương pháp giải: Có thể sử dụng một trong các cách sau: + Cách 1: Áp dụng trường hợp đồng dạng của hai tam giác thường vào tam giác vuông. + Cách 2: Sử dụng đặc biệt nhận biết hai tam giác vuông đồng dạng. Dạng 2 . Sử dụng trường hợp đồng dạng của tam giác vuông để giải toán. Phương pháp giải: Sử dụng các trường hợp đồng dạng của hai tam giác vuông (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng tỉ lệ, từ đo suy ra điều cần chứng minh. Dạng 3 . Tỉ số diện tích của hai tam giác. Phương pháp giải: Sử dụng định lý tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng.