Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện Toán 7 năm 2022 - 2023 phòng GDĐT Lục Nam - Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lục Nam, tỉnh Bắc Giang; đề thi hình thức 60% trắc nghiệm + 40% tự luận, thời gian làm bài 120 phút; đề thi có đáp án và lời giải chi tiết; ngày thi 20/03/2023. Trích dẫn Đề học sinh giỏi huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Lục Nam – Bắc Giang : + Một hình hộp chữ nhật có chiều dài, chiều rộng và chiều cao lần lượt tỉ lệ với 3; 2; 1. Biết chiều cao bằng 2cm. Khi đó thể tích hình hộp chữ nhật bằng? Cho ba đường thẳng phân biệt a, b, c. Hai đường thẳng a và b song song với nhau khi: A. a và b cùng cắt với c B. a và b cùng vuông góc với c C. a vuông góc với c D. b vuông góc với c. + Trong các dữ liệu sau, dữ liệu nào là số liệu? A. Xếp loại của các học sinh cuối năm học. B. Số học sinh đi học muộn trong một buổi học. C. Danh sách học sinh đạt học sinh giỏi của một lớp. D. Địa chỉ của các công nhân trong một tổ sản xuất. + Cho tam giác ABC vuông tại A (AB < AC), lấy N thuộc cạnh BC sao cho BN = BA. Kẻ BH vuông góc với AN tại H. a.Chứng minh: ABH NBH. b.Lấy điểm M thuộc tia CB sao cho CM = CA, tia phân giác của góc C cắt AN tại E. Chứng minh ∆AEM vuông cân. Cho tam giác ABC vuông tại A có 0 C 15. Trên tia BA lấy điểm I sao cho BI = 2AC. Chứng minh ∆BIC cân.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2021 - 2022 phòng GDĐT Nga Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nga Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 13 tháng 04 năm 2022. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2021 – 2022 phòng GD&ĐT Nga Sơn – Thanh Hóa : + Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứmg minh rằng đa thức f(x) có ít nhất hai nghiệm là 0 và -1. + Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB. 1. Chứng minh BM = CN. 2. Chứng minh BC đi qua trung điểm của MN 3. Đường trung trực của MN và tia phân giác của góc BAC cắt nhau tại K. Chứng minh KC vuông góc AC. + Cho M N 2018 2019 2020 2021 2019 2020 2021 2018. So sánh M và N?
Đề Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Ứng Hòa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 14 tháng 04 năm 2022. Trích dẫn đề Olympic Toán 7 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện của hội Chữ thập đỏ huyện Ứng Hòa, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5, 6, 7 nhưng sau đó chia theo tỉ lệ 4, 5, 6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho tam giác ABC nhọn (AB < AC). Vẽ về phía ngoài ABC các tam giác đều là ABD và ACE. Gọi I là giao điểm của CD và BE, K là giao điểm của AB và DC. 1) Chứng minh ADC = ABE. 2) Chứng minh DIB = 60°. 3) Gọi M, N lần lượt là trung điểm CD và BE. Chứng minh AMN đều. 4) Chứng minh IA là tia phân giác DIE. + Cho 100 số hữu tỉ trong đó tích của bất kỳ ba số nào cũng là một số âm. Chứng minh rằng tất cả 100 số đó đều là số âm.
Đề học sinh giỏi Toán 7 năm 2021 - 2022 phòng GDĐT Diễn Châu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An. Trích dẫn đề học sinh giỏi Toán 7 năm 2021 – 2022 phòng GD&ĐT Diễn Châu – Nghệ An : + Ba khối 6, 7, 8 của một trường THCS có tất cả 441 học sinh. Nếu số học sinh khối 6; học sinh khối 7 và số học sinh khối 8 tham gia dự thi “Đấu trường Toán hoc VIOEDU” thì số học sinh còn lại của ba khối bằng nhau. Tính số học sinh mỗi khối của trường đó. + Cho tam giác ABC có ba góc nhọn (AB < AC), D là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng AB có chứa điểm C vẽ đoạn thẳng AE vuông góc với AB và AE = AB. Trên nửa mặt phẳng bờ là đường thẳng AC có chứa điểm B vẽ đoạn thẳng AK vuông góc với AC và AK = AC. Trên tia đối của tia DA lấy điểm N sao cho DN = DA. Gọi M là giao điểm của AD và KE. Chứng minh rằng? + Tìm số tự nhiên n có hai chữ số biết rằng hai số (2n + 1) và (3n + 1) đồng thời là số chính phương. Chứng minh rằng với mọi số tự nhiên n > 2 thì tổng?
Đề khảo sát năng lực Toán 7 năm 2021 - 2022 phòng GDĐT Thái Thụy - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát năng lực học sinh môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thái Thụy, tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát năng lực Toán 7 năm 2021 – 2022 phòng GD&ĐT Thái Thụy – Thái Bình : + Cuối học kì I, ba bạn An, Tâm, Bình được thưởng tổng số vở là 58 quyển. Ba bạn quyết định dùng một nửa số vở của An, 1 3 số vở của Tâm, 1 4 số vở của Bình để tặng các bạn học sinh nghèo. Biết số vở còn lại sau khi tặng của ba bạn bằng nhau. Hỏi mỗi bạn được thưởng bao nhiêu quyển vở? + Cho ABC có góc A nhỏ hơn 900. Trên nửa mặt phẳng bờ AB không chứa điểm C lấy điểm M sao cho ABM vuông cân tại A. Trên nửa mặt phẳng bờ AC không chứa điểm B lấy điểm N sao cho ACN vuông cân tại A. Gọi K là giao điểm của BN và CM. 1. Chứng minh AMC = ABN. 2. Chứng minh BN CM. 3. Chứng minh MN2 + BC2 = 2(AB2 + AC2) 4. Tính góc AKC? + Tìm các số a, b, c nguyên dương thoả mãn a 3 + 5a 2 + 21 = 7b và a + 5 = 7c.