Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác Toán 7

Tài liệu gồm 63 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. BA ĐƯỜNG TRUNG TRỰC Dạng 1. Xác định tâm đường tròn ngoại tiếp tam giác. – Dựa vào định nghĩa và sự đồng quy của ba đường trung trực trong tam giác. – Sử dụng tính chất giao điểm các đường trung trực trong tam giác thì cách đều ba đỉnh của tam giác đó. Dạng 2. Chứng minh ba đường thẳng đồng quy, ba điểm thẳng hàng. – Dựa vào định lí, tính chất về đường trung trực và sự đồng quy của ba đường trung trực trong tam giác. Dạng 3. Vận dụng tính chất ba đường trung trực trong tam giác để giải quyết các bài toán khác. – Dựa vào tính chất về đường trung trực và sự đồng quy của ba đường trung trực trong tam giác. BA ĐƯỜNG CAO Dạng 1. Xác định trực tâm của một tam giác. – Để xác định trực tâm của một tam giác, ta cần tìm giao điểm hai đường cao của tam giác đó. – Dựa vào định nghĩa, định lí và nhận xét, tính chất về đường cao và sự đồng quy của ba đường cao trong tam giác. Dạng 2. Sử dụng tính chất trực tâm của tam giác để chứng minh hai đường thẳng vuông góc, ba đường thẳng đồng quy. – Nếu H là giao điểm hai đường cao kẻ từ B và C của tam giác ABC thì AH ⊥ BC. – Nếu ba đường thẳng là ba đường cao của một tam giác thì chúng cùng đi qua một điểm. Dạng 3. Vận dụng tính chất ba đường cao trong tam giác để giải quyết các bài toán khác. – Dựa vào định lí, tính chất về sự đồng quy của ba đường cao trong tam giác. PHẦN III . BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hai góc đối đỉnh
Nội dung Chuyên đề hai góc đối đỉnh Bản PDF - Nội dung bài viết Chuyên đề hai góc đối đỉnh Chuyên đề hai góc đối đỉnh Tài liệu này gồm 09 trang, cung cấp kiến thức về hai góc đối đỉnh, từ lý thuyết đến các dạng toán và bài tập thực hành. Được thiết kế để hỗ trợ học sinh lớp 7 trong quá trình học tập môn Toán, đặc biệt là phần Hình học chương 1 với tiêu chí mục tiêu sau: - Kiến thức: Học sinh sẽ có khả năng phát biểu đúng khái niệm hai góc đối đỉnh và nắm vững các tính chất cơ bản của chúng. - Kỹ năng: Học sinh sẽ được trang bị kỹ năng nhận biết hai góc đối đỉnh và áp dụng tính chất của chúng vào việc tính toán số đo góc. Bên cạnh đó, tài liệu cung cấp các dạng bài tập thực hành như: 1. Dạng 1: Nhận biết hai góc đối đỉnh. 2. Dạng 2: Tính toán số đo góc. 3. Dạng 3: Chứng minh tính chất hai góc đối đỉnh. Mỗi bài tập đều được kèm theo đáp án và lời giải chi tiết, giúp học sinh tự tin và hiểu rõ hơn về chủ đề này. Tài liệu được xây dựng theo cách trực quan, dễ hiểu, giúp học sinh tiếp cận môn Toán một cách chủ động và tích cực.
Chuyên đề nghiệm của đa thức một biến
Nội dung Chuyên đề nghiệm của đa thức một biến Bản PDF - Nội dung bài viết Tài liệu học chuyên đề nghiệm của đa thức một biếnLÝ THUYẾT TRỌNG TÂMCÁC DẠNG BÀI TẬP: Tài liệu học chuyên đề nghiệm của đa thức một biến Tài liệu này bao gồm 10 trang, cung cấp thông tin lý thuyết cơ bản, các dạng toán và bài tập liên quan đến chuyên đề nghiệm của đa thức một biến. Được thiết kế đặc biệt để hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán lớp 7 phần Đại số chương 4: Biểu thức đại số. Mục tiêu chính của tài liệu này là giúp học sinh: Nắm vững định nghĩa về nghiệm của đa thức một biến. Hiểu được số lượng nghiệm có thể của đa thức một biến không vượt quá bậc của đa thức. Kiểm tra một số có phải là nghiệm của đa thức một biến hay không. Tìm ra nghiệm của một số đa thức một biến dạng đơn giản. Biết cách chứng minh đa thức vô nghiệm. LÝ THUYẾT TRỌNG TÂM CÁC DẠNG BÀI TẬP: Dạng 1: Kiểm tra nghiệm của đa thức. Dạng 2: Tìm nghiệm của đa thức. Bên cạnh đó, tài liệu còn cung cấp các bài tập thực hành như: Tìm nghiệm của đa thức trong bài toán lớp 1. Chứng minh đa thức không có nghiệm trong bài toán lớp 2. Tìm đa thức một biến có nghiệm cho trước trong dạng bài tập 3. Tài liệu này sẽ giúp học sinh lớp 7 hiểu rõ hơn về chuyên đề nghiệm của đa thức một biến và rèn luyện kỹ năng giải bài tập một cách thành thạo.
Chuyên đề cộng, trừ đa thức một biến
Nội dung Chuyên đề cộng, trừ đa thức một biến Bản PDF - Nội dung bài viết Chuyên đề cộng, trừ đa thức một biến Chuyên đề cộng, trừ đa thức một biến Chuyên đề này bao gồm 08 trang tài liệu, tập trung vào lý thuyết cơ bản về cách cộng, trừ đa thức một biến. Bên cạnh đó, tài liệu cũng cung cấp các dạng toán và bài tập thực hành, kèm theo đáp án và lời giải chi tiết. Được thiết kế nhằm hỗ trợ học sinh lớp 7 trong quá trình học tập môn Toán, đặc biệt là phần Đại số chương 4: Biểu thức đại số. Mục tiêu của chuyên đề này là giúp học sinh: Hiểu và nắm vững cách cộng, trừ đa thức theo hàng ngang và theo hàng dọc. Thực hiện được cộng, trừ đa thức theo hàng ngang và theo hàng dọc. Phần lý thuyết trọng tâm của tài liệu giải thích các khái niệm cơ bản và phương pháp tính toán cộng, trừ đa thức một biến. Các dạng bài tập đa dạng giúp học sinh nắm vững kiến thức và có cơ hội luyện tập thêm. Đáp án và lời giải chi tiết giúp học sinh tự kiểm tra và tự ôn tập sau khi giải bài tập. Cụ thể, trong tài liệu sẽ gồm: Lí thuyết trọng tâm Các dạng bài tập, bao gồm: Dạng 1: Tính tổng hoặc hiệu của hai đa thức. Dạng 2: Tìm đa thức chưa biết trong một đẳng thức. Đây sẽ là tài liệu hữu ích giúp học sinh lớp 7 rèn luyện kiến thức và kỹ năng cộng, trừ đa thức một biến một cách hiệu quả.
Chuyên đề đa thức một biến
Nội dung Chuyên đề đa thức một biến Bản PDF - Nội dung bài viết Một cẩm nang đầy đủ về chuyên đề đa thức một biến Một cẩm nang đầy đủ về chuyên đề đa thức một biến Để giúp học sinh lớp 7 nắm vững kiến thức về đa thức một biến trong chương trình Toán lớp 7 phần Đại số chương 4: Biểu thức đại số, chúng tôi đã biên soạn một tài liệu gồm 10 trang với lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đa thức một biến. Tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh hỗ trợ trong quá trình học tập. Mục tiêu của tài liệu là giúp học sinh nắm vững khái niệm về đa thức một biến, bậc, hệ số của đa thức một biến. Kĩ năng sắp xếp và tìm các thông số của đa thức như bậc, hệ số cao nhất, hệ số tự do cũng được đề cập và thực hành trong các dạng bài tập. Trong tài liệu, học sinh sẽ được hướng dẫn cách thu gọn và sắp xếp các hạng tử của đa thức, xác định bậc và hệ số của đa thức, cũng như tính giá trị của đa thức thông qua các dạng bài tập cụ thể.