Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 8 môn Toán năm 2017 2018 phòng GD ĐT Duy Xuyên Quảng Nam

Nội dung Đề HSG lớp 8 môn Toán năm 2017 2018 phòng GD ĐT Duy Xuyên Quảng Nam Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 8 năm 2017-2018 phòng GD&ĐT Duy Xuyên - Quảng Nam Đề thi HSG Toán lớp 8 năm 2017-2018 phòng GD&ĐT Duy Xuyên - Quảng Nam Chào các thầy cô giáo và các em học sinh lớp 8! Hôm nay mình xin giới thiệu đến các bạn đề thi HSG Toán lớp 8 năm 2017 - 2018 từ phòng GD&ĐT Duy Xuyên - Quảng Nam. Đề thi này bao gồm đáp án, lời giải chi tiết và hướng dẫn cách chấm điểm. Vấn đề đầu tiên trong đề thi là về vận tốc của một vật thể di chuyển từ A đến B theo quy tắc nhất định, dừng lại sau mỗi quãng đường cố định trong một khoảng thời gian nhất định. Bài toán yêu cầu tính khoảng cách từ A đến B dựa vào các thông tin đã được cung cấp. Bài toán thứ hai liên quan đến tam giác ABC, trong đó BD là phân giác. Chúng ta cần chứng minh APQR là hình thang cân và tính độ dài của AR dựa vào độ dài hai cạnh AB và AC đã biết trước. Bài toán cuối cùng đưa ra một hình bình hành ABCD, và yêu cầu chứng minh một số tính chất của các đường thẳng đi qua các đỉnh của hình bình hành. Đề thi này mang đến những bài toán thú vị và giúp các em rèn luyện kỹ năng giải toán, logic và suy luận. Hy vọng rằng đề thi này sẽ giúp ích cho các em trong việc ôn tập và nâng cao kiến thức toán học của mình. Chúc các em may mắn và thành công trên bước đường học tập!

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 8 cấp huyện năm 2020 - 2021 phòng GDĐT Ba Vì - Hà Nội
Thứ Năm ngày 22 tháng 04 năm 2021, phòng GD&ĐT huyện Ba Vì, thành phố Hà Nội tổ chức kỳ thi Olympic cấp huyện môn Toán lớp 8 năm học 2020 – 2021. Đề thi Olympic Toán 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi Olympic Toán 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội : + Tìm các số nguyên x, y thỏa mãn: xy – 4 = 2x + 3y. + Tìm các số nguyên x sao cho A = x(x – 1)(x – 7)(x – 8) là một số chính phương. + Cho hình thoi ABCD có BAD = 60°. Qua C vẽ đường thẳng d bất kì không cắt cạnh của hình thoi ABCD, nhưng d cắt tia AB tại E và cắt tia AD tại F. a) Chứng minh BCE đồng dạng DFC. b) Chứng minh BD2 = BE.DF. c) Gọi I là giao điểm của BF và DE. Tính số đo góc EIF.
Đề thi Olimpic Toán 8 năm 2020 - 2021 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olimpic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội. Trích dẫn đề thi Olimpic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết cho 48. + Một mảnh đất hình thang ABCD có AB//CD, AB = BC = AD = a, CD = 2a. a/ Tính các góc của hình thang ABCD. b/ Tính diện tích của hình thang ABCD theo a. c/ Hãy chia mảnh đất ABCD thành 4 mảnh đất hình thang giống hệt nhau bằng nhau. + Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD = AB, CE = 1/3.AC, CD và BE cắt nhau tại I. Tính các tỷ số.
Đề thi Olympic Toán 8 năm 2020 - 2021 phòng GDĐT Gia Lâm - Hà Nội
Đề thi Olympic Toán 8 năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2021.
Đề thi HSG huyện Toán 8 năm 2020 - 2021 phòng GDĐT Hà Trung - Thanh Hóa
Thứ Sáu ngày 09 tháng 04 năm 2021, phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa tổ chức kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 8 cấp huyện năm học 2020 – 2021. Đề thi HSG huyện Toán 8 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG huyện Toán 8 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa : + Cho tam giác đều ABC. Gọi O là trung điểm của BC. Trên cạnh AB và AC lần lượt lấy các điểm di động M và N sao cho MON = 600. Chứng minh rằng: 1) OMB đồng dạng với ONC từ đó suy ra tích BM.CN không đổi. 2) Các tia MO, NO lần lượt là tia phân giác của góc BMN và CNM. 3) Chu vi tam giác AMN không đổi. + Xác định đa thức f(x) biết: f(x) chia cho x – 1 dư 4; chia cho x + 2 dư 1 và chia cho x2 + x – 2 được thương là 5x. + Tìm số tự nhiên k để 4 7 2 2 2 k là số chính phương.