Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kỳ 1 Toán 10 năm 2019 - 2020 trường Thuận Thành 3 - Bắc Ninh

Chiều thứ Sáu ngày 08 tháng 11 năm 2019, trường THPT Thuận Thành số 3, tỉnh Bắc Ninh tổ chức kiểm tra chất lượng giữa học kỳ 1 môn Toán lớp 10 năm học 2019 – 2020. Đề thi giữa học kỳ 1 Toán 10 năm 2019 – 2020 trường Thuận Thành 3 – Bắc Ninh được biên soạn theo dạng đề tự luận, đề gồm có 01 trang với 05 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi giữa học kỳ 1 Toán 10 năm 2019 – 2020 trường Thuận Thành 3 – Bắc Ninh : + Một công ty sản xuất máy ghi âm với chi phí là 40 đôla/chiếc. Biết rằng nếu máy ghi âm bán được với giá x đôla/chiếc thì mỗi tháng công ty đó bán được (120 − x) chiếc. Gọi lợi nhuận của công ty trong một tháng là tổng số tiền chênh lệch giữa số tiền thu được khi bán máy và chi phí sản xuất các máy ghi âm được bán ra trong tháng đó. a. Lập hàm biểu diễn lợi nhuận hàng tháng của nhà sản xuất theo giá bán (gọi hàm lợi nhuận là f(x) và giá bán là x). b. Xác định giá bán x để lợi nhuận của công ty trong một tháng về sản phẩm máy ghi âm đó là lớn nhất. [ads] + Trong mặt phẳng tọa độ Oxy, cho 3 điểm: A(1;1), B(3;3), C(2;0). a. Chứng minh rằng A, B, C là ba đỉnh của một tam giác. b. Tính diện tích tam giác ABC. c. Xác định tọa độ điểm M ∈ Ox sao cho |MA + 2MB + 3MC| đạt giá trị nhỏ nhất. + Cho hàm số y = f(x) = x^2 + x – 6. a. Lập bảng biến thiên và vẽ đồ thị của hàm số đã cho. b. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn[−2;2].

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra giữa HKI lớp 10 môn Toán trường THPT Nguyễn Thị Minh Khai - Hà Nội
Đề kiểm tra giữa HKI lớp 10 môn Toán trường THPT Nguyễn Thị Minh Khai – Hà Nội gồm 2 đề: đề trắc nghiệm và đề tự luận. Đề trắc nghiệm gồm 25 câu hỏi, đề tự luận gồm 3 câu hỏi, thời gian làm bài mỗi đề là 45 phút. Trích dẫn đề thi : + Một tia sáng chiếu xiên một góc 45 độ đến điểm O trên bề mặt của một chất lỏng thì bị khúc xạ như hình vẽ bên. Trong mặt phẳng (Oxy) như đã thể hiện trong hình vẽ, gọi y = f(x) là hàm số có đồ thị trùng với đường đi của tia sáng nói trên. Tính f(-2002) + f(2002). A. 4004 B. 2002 C. 0. D. 2002. [ads] + Cho hàm số y = f(x) = -x^2 + 4x – 1 có đồ thị như hình vẽ bên. Xét hàm số y = g(x) = -x^2 + 4|x| – 1 và các kết luận sau: (I). Hàm số y = g(x) đồng biến trên (-∞; 2) (II). Đồ thị hàm số y = g(x) nhận trục tung là trục đối xứng (III). Hàm số y = g(x) có giá trị lớn nhất và không có giá trị nhỏ nhất (IV). Với x ∈ (-3; -2), hàm số y = g(x) nhận giá trị dương Trong các kết luận trên, số kết luận đúng là? A. 2 B. 4. C. 1 D. 3 + Cho hàm số y = x^2 – 2x – 3 1. Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số trên 2. Chứng minh rằng (P) cắt đường thẳng (d): y = 2x – 7 tại một điểm A duy nhất. Lập phương trình đường thẳng qua A và vuông góc với d 3. Tìm m để phương trình |x^2 – 2x – 3| = m có bốn nghiệm phân biệt
Đề kiểm tra giữa HKI năm học 2017 - 2018 môn Toán 10 trường THPT chuyên Lương Thế Vinh - Đồng Nai
Đề kiểm tra giữa HKI năm học 2017 – 2018 môn Toán 10 trường THPT chuyên Lương Thế Vinh – Đồng Nai gồm 4 mã đề, mỗi đề gồm 25 câu hỏi trắc nghiệm, thời gian làm bài 45 phút. Đề kiểm tra có đáp án . Trích dẫn đề kiểm tra : + Cho hàm số y = 10x^2 − 20x + 2017. Khẳng định nào sau đây là đúng? A. Hàm số đã cho đồng biến trên (−∞; +∞) B. Hàm số đã cho đồng biến trên (−∞; 1) C. Hàm số đã cho đồng biến trên (1; +∞) D. Hàm số đã cho nghịch biến trên (1; +∞) [ads] + Cho các tập hợp A, B, C được minh họa bằng biểu đồ Ven như hình bên. Phần tô màu xám trong hình là biểu diễn của tập hợp nào sau đây? A. (A\C) ∪ (A\B) B. (A ∪ B) \C C. A ∩ B ∩ C D. (A ∩ B) \C + Cho bốn điểm A, B, C, D. Khẳng định nào sau đây là SAI? A. Điều kiện cần và đủ để vtAB = vtCD là tứ giác ABDC là hình bình hành B. Điều kiện cần và đủ để vtNA = vtMA là N ≡ M C. Điều kiện cần và đủ để vtAB = vt0 là A ≡ B D. Điều kiện cần và đủ để vtAB và vtCD là hai vectơ đối nhau là vtAB + vtCD = vt0
Đề kiểm tra giữa học kỳ I môn Toán 10 năm học 2017 - 2018 trường THPT Việt Nam - Ba Lan - Hà Nội
Đề kiểm tra giữa học kỳ I môn Toán 10 năm học 2017 – 2018 trường THPT Việt Nam – Ba Lan – Hà Nội gồm 4 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Đề kiểm tra có đáp án .
Đề kiểm tra giữa học kỳ I năm học 2017-2018 môn Toán 10 trường THCS - THPT Nguyễn Tất Thành - Hà Nội
Đề kiểm tra giữa học kỳ I năm học 2017-2018 môn Toán 10 trường THCS – THPT Nguyễn Tất Thành – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề kiểm tra : + Lập bảng biến thiên và vẽ đồ thị hàm số y = -x^2 + 2x + 3. + Tìm m để phương trình -x^2 + 2x + 3 = 2m – 1 có 2 nghiệm dương phân biệt. + Trong mặt phẳng tọa độ Oxy cho A(1; -3), B(3; -2), C(-4; 2). 1. Gọi G là trọng tâm tam giác ABC và I là trung điểm của AG. Tìm tọa độ điểm I. 2. Đường thằng BI cắt AC tại K. Chứng minh AK = 1/5AC và tìm tọa độ điểm K. + Tìm a, b ,c biết đồ thị hàm số ax^2 + bx + c = 0 là một đường parabol có đỉnh I(1; -4) và cắt trục hoành Ox tại điểm có hoành độ bằng -1. [ads]