Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán tháng 2 năm 2023 trường THCS Tây Mỗ Hà Nội

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán tháng 2 năm 2023 trường THCS Tây Mỗ Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng môn Toán lớp 9 tháng 2 năm 2023 trường THCS Tây Mỗ Hà Nội Đề khảo sát chất lượng môn Toán lớp 9 tháng 2 năm 2023 trường THCS Tây Mỗ Hà Nội Chào mừng các thầy cô giáo và các em học sinh lớp 9, Sytu xin giới thiệu đến quý vị đề khảo sát chất lượng môn Toán lớp 9 tháng 2 năm học 2022 - 2023 tại trường THCS Tây Mỗ, quận Nam Từ Liêm, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 18 tháng 02 năm 2023. Đề khảo sát chất lượng Toán lớp 9 tháng 2 năm 2023 trường THCS Tây Mỗ - Hà Nội bao gồm các câu hỏi thú vị và mang tính logic như sau: Giải bài toán bằng cách lập hệ phương trình: Theo kế hoạch hai tổ sản xuất phải may được 2200 chiếc áo trong một ngày. Do tổ 1 làm vượt mức kế hoạch 12%, tổ hai làm vượt mức kế hoạch 10% nên cả hai tổ đã may vượt mức được 240 chiếc áo. Hỏi theo kế hoạch, mỗi tổ phải may được bao nhiêu áo trong một ngày. Tính chiều cao của một cột cờ, biết bóng của cột cờ trên mặt đất dài 11,6m và góc tạo bởi tia nắng mặt trời với mặt đất là 36°50' (làm tròn đến số thập phân thứ nhất). Cho đường tròn (O) và điểm C nằm ngoài (O). Từ C kẻ hai tiếp tuyến CA, CB với (O) (A, B là tiếp điểm). Chứng minh bốn điểm O, A, B, C cùng thuộc một đường tròn. Qua C kẻ cắt tuyến CDE đến (O) (D nằm giữa C và E). Chứng minh: AC2 = CD * CE. Gọi K là trung điểm của DE, đường thẳng BK cắt đường tròn (O) tại Q. Chứng minh rằng AQ // DE. Chứng minh khi cắt tuyến CDE thay đổi thì trọng tâm G của tam giác ADE luôn chạy trên một đường tròn cố định. Hy vọng rằng đề khảo sát này sẽ giúp các em học sinh ôn tập và củng cố kiến thức một cách hiệu quả. Chúc quý thầy cô và các em có kỳ thi thành công!

Nguồn: sytu.vn

Đọc Sách

Đề KSCL Toán 9 năm 2017 - 2018 trường THCS Lê Quý Đôn - Hà Nội lần 2
Đề KSCL Toán 9 năm 2017 – 2018 trường THCS Lê Quý Đôn – Hà Nội lần 2 gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được tổ chức ngày 17/03/2018 nhằm giúp học sinh ôn tập, rèn luyện để chuẩn bị cho kỳ thi vào lớp 10 môn Toán. Trích dẫn đề KSCL Toán 9 : + Cho phương trình x2 – (4m-1)x + 3m2 – 2m = 0 (x là ẩn) a) Giải phương trình khi m = 1. b) Tìm m để phương trình có hai nghiệm x1; x2 thỏa mãn (x1)^2 + (x2)^2 = 7. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: “Hai người cùng làm chung một công việc thì sau 3 giờ 36 phút làm xong. Nếu làm một mình thì người thứ nhất hoàn thành công việc sớm hơn người thứ hai là 3 giờ. Hỏi nếu mỗi người làm một mình thì sau bao lâu xong công việc.” [ads] + Cho tam giác MAB vuông tại M, MB < MA. Kẻ MH vuông góc với AB ( H thuộc AB). Đường tròn (O) đường kính MH cắt MA và MB lần lượt tại E và F (E, F khác M). 1) Chứng minh tứ giác MEHF là hình chữ nhật 2) Chứng minh tứ giác AEFB nội tiếp. 3) Đường thẳng EF cắt đường tròn (O’) ngoại tiếp tam giác MAB tại P và Q (P thuộc cung MB). Chứng minh tam giác MPQ cân. 4) Gọi I là giao điểm thứ hai của đường tròn (O) với đường tròn (O’). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M, I, K thẳng hàng.
Đề KSCL đầu năm năm học 2017 - 2018 môn Toán 9 trường THCS Cẩm Vũ - Hải Dương
Đề khảo sát chất lượng đầu năm năm học 2017 – 2018 môn Toán 9 trường THCS Cẩm Vũ – Cẩm Giàng, Hải Dương gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Bạn Nam đi xe đạp từ nhà đến Thành phố Hải Dương với vận tốc trung bình 15km/h. Lúc về bạn đi với vận tốc 12km/h, nên thời gian đi ít hơn thời gian về 12 phút. Tính độ dài quãng đường từ nhà bạn Nam đến thành phố Hải Dương?
Đề KSCL Toán thi vào lớp 10 năm 2024 - 2025 phòng GDĐT Thiệu Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán ôn thi vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2024. Trích dẫn Đề KSCL Toán thi vào lớp 10 năm 2024 – 2025 phòng GD&ĐT Thiệu Hóa – Thanh Hóa : + Trong mặt phẳng tọa độ Oxy cho đường thẳng (d) có phương trình: y = (a + 1)x + b. Xác định a và b biết đường thẳng (d) đi qua điểm A(1;-5) và có hệ số góc bằng 3. + Cho phương trình x2 – 2x + m – 1 = 0 với m là tham số. 1. Giải phương trình với m = -2. 2. Tìm các giá trị của tham số m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn. + Cho nửa đường tròn tâm O đường kính MN. Gọi A là điểm chính giữa cung MN, E là điểm trên cung AM (E khác A và M). Lấy điểm F trên đoạn NE sao cho NF = ME. Gọi K là giao điểm của AO và NE. 1. Chứng minh rằng EMOK là tứ giác nội tiếp. 2. Chứng minh rằng tam giác AEF vuông cân. 3. Hai đường thẳng ME và OA cắt nhau tại D. Chứng minh rằng AK.ED = AD.EK.
Đề KSCL Toán vào lớp 10 vòng 2 năm 2024 - 2025 phòng GDĐT Hưng Hà - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán tuyển sinh vào lớp 10 Trung học Phổ thông vòng 2 năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND huyện Hưng Hà, tỉnh Thái Bình. Trích dẫn Đề KSCL Toán vào lớp 10 vòng 2 năm 2024 – 2025 phòng GD&ĐT Hưng Hà – Thái Bình : + Một mảnh vườn hình chữ nhật, nếu chiều dài và chiều rộng đều tăng thêm 4m thì diện tích mảnh vườn tăng thêm 216m2. Nếu tăng chiều rộng 2m và giảm chiều dài 5m thì diện tích mảnh vườn giảm 50m2. Tính chiều rộng và chiều dài của mảnh vườn ban đầu. + Tìm m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn S = y2 + 2x + 1 đạt giá trị nhỏ nhất. + Cho đường tròn (O;R) và đường kính AB. Bán kính OC vuông góc với AB, M là điểm bất kỳ trên cung nhỏ AC (M khác A và C), BM cắt AC tại H. Gọi K là hình chiếu vuông góc của H trên AB a) Chứng minh bốn điểm B, C, H, K cùng thuộc một đường tròn b) Chứng minh ACM = ACK c) Trên đoạn thẳng BM lấy điểm E sao cho BE = AM. Chứng minh tam giác ECM là tam giác vuông cân tại C d) Gọi đường thẳng d là tiếp tuyến tại A của đường tròn (O). Gọi P là một điểm nằm trên d sao cho hai điểm P, C nằm trong cùng một nửa mặt phẳng bờ AB và AP.MB/MA = R. Chứng minh đường thẳng PB đi qua trung điểm của đoạn thẳng HK.