Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề đồ thị của hàm số y ax + b (a khác 0)

Tài liệu gồm 23 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề đồ thị của hàm số y = ax + b (a khác 0) trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đồ thị của hàm số bậc nhất. 2. Cách vẽ đồ thị hàm số bậc nhất y = ax + b (a khác 0). 3. Chú ý. B. Bài tập và các dạng toán. Dạng 1 : Vẽ đồ thị hàm số bậc nhất. Dạng 2 : Tìm tọa độ giao điểm của hai đường thẳng. Cách giải: Cho hai đường thẳng d y ax b và d y ax b. Để tìm tọa độ giao điểm của d và d’, ta làm như sau: Cách 1: Dùng phương pháp đồ thị (thường sử dụng trong trường hợp d và d’ cắt nhau tại điểm có tọa độ nguyên). – Vẽ d và d’ trên cùng một hệ trục tọa độ. – Xác định tọa độ giao điểm trên hình vẽ. – Chứng tỏ tọa độ giao điểm đó cùng thuộc d và d’. Cách 2: Dùng phương pháp đại số. – Xét phương trình hoành độ giao điểm của d và d’: ax b a x b. – Từ phương trình hoành độ giao điểm, tìm được x và thay vào phương trình của d (hoặc d’) để tìm y. – Kết luận tọa độ giao điểm của d và d’. Dạng 3 : Xét tính đồng quy của ba đường thẳng. Cách giải: Chú ý: Ba đường thẳng đồng quy là ba đường thẳng phân biệt và cùng đi qua 1 điểm. Để xét tính đồng quy của ba đường thẳng (phân biệt) cho trước, ta làm như sau: + Tìm tọa độ giao điểm của 2 trong 3 đường thẳng đã cho. + Kiểm tra xem nếu giao điểm vừa tìm được thuộc đường thẳng còn lại thì kết luận ba đường thẳng đó đồng quy. Dạng 4 : Tính khoảng cách từ gốc tọa độ O đến một đường thẳng không đi qua O. Cách giải: Để tính khoảng cách từ O đến đường thẳng d (không đi qua O) ta làm như sau: Bước 1: Tìm A B lần lượt là giao điểm của d với Ox và Oy. Bước 2: Gọi H là hình chiếu vuông góc của O trên d. Khi đó: 222 1 11 OH OA OB. Dạng 5 : Tìm điểm cố định mà hàm số luôn đi qua phụ thuộc vào tham số m. Cách giải: 1. Khái niệm điểm cố định: Điểm Mxy là điểm cố định của (d y ax b) (a b phụ thuộc vào tham số m a 0) khi và chỉ khi điểm M luôn thuộc (d) với mọi điều kiện của tham số m. Hoặc tương đương với điều kiện: 0 0 y ax b với mội điều kiện của tham số. 2. Cách tìm điểm cố định. Gọi Ix y là điểm cố định của 0 d y ax b m. Biến đổi 0 0 y ax b về dạng Ax y m Bx y hoặc 2 0 0 Ax y m Bx y m Cx y. Từ đó tìm được 0 0 x y rồi kết luận. 3. Chú ý: Cách tính khoảng cách từ Ax y đến Bx y trên hệ trục tọa độ Oxy 2 2 12 12 AB y y x. Dạng 6 : Tìm tham số m sao cho khoảng cách từ gốc tọa độ đến đường thẳng cho trước là lớn nhất. Cách giải: Cho đường thẳng (d y ax b) phụ thuộc tham số m. Muốn tìm m để khoảng cách từ O đến d là lớn nhất, ta có thể làm theo một trong hai cách sau. Cách 1: Phương pháp hình học. – Gọi A B lần lượt là giao điểm của d với Ox và Oy; H là hình chiếu vuông góc của O trên d. – Ta có khoảng cách từ O đến d là OH và được tính bởi công thức sau: 222 1 11 OH OB OC. – Từ đó tìm điều kiện của m để OH đạt giá trị lớn nhất. Cách 2: Dùng phương pháp điểm cố định. – Tìm được I là điểm cố định mà d luôn đi qua. – Gọi H là hình chiếu vuông góc của O trên d OH OI hằng số d ⇒ OH OI. – Ta có: OH OI d max là đường thẳng qua I và vuông góc với OI. Từ đó tìm được tham số m. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hàm số bậc nhất
Nội dung Chuyên đề hàm số bậc nhất Bản PDF - Nội dung bài viết Chuyên đề hàm số bậc nhất Chuyên đề hàm số bậc nhất Tài liệu này bao gồm 16 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Nó tổng hợp kiến thức quan trọng về hàm số bậc nhất và cung cấp hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm trong chuyên đề này. Được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 2. Tóm tắt lý thuyết 1. Hàm số bậc nhất: Được biểu diễn bởi công thức y = ax + b với a, b là các số đã biết và a khác 0. 2. Các tính chất của hàm số bậc nhất: Hàm số bậc nhất xác định trên toàn bộ tập số thực. Nó đồng biến khi a > 0 và nghịch biến khi a < 0. Các dạng bài minh họa Dạng 1: Tính giá trị của hàm số tại một điểm, giúp xác định toạ độ của điểm trên đồ thị một cách nhanh chóng. Dạng 2: Vẽ đồ thị hàm bậc nhất theo các bước đã học. Dạng 3: Nhận dạng hàm số bậc nhất dựa vào định nghĩa. Dạng 4: Xét tính đồng biến và nghịch biến của hàm số bậc nhất, thông qua giá trị của a. Dạng 5: Bài toán thực tế liên quan đến hàm số bậc nhất. Trắc nghiệm rèn luyện phản xạ và phiếu bài tự luyện Bao gồm các dạng bài như nhận biết khái niệm hàm số, tính giá trị của hàm số, tìm điều kiện xác định của hàm số và vẽ đồ thị hàm số. Đây là tài liệu hữu ích để học sinh nắm vững kiến thức về hàm số bậc nhất và cải thiện kỹ năng giải bài tập trong chương trình Đại số.
Chuyên đề căn bậc ba
Nội dung Chuyên đề căn bậc ba Bản PDF - Nội dung bài viết Chuyên đề căn bậc ba: Tài liệu học tập hỗ trợ học sinh Chuyên đề căn bậc ba: Tài liệu học tập hỗ trợ học sinh Tài liệu "Chuyên đề căn bậc ba" gồm 19 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, nhằm tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm trong chuyên đề căn bậc ba. Tài liệu này được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1, bài số 9. KIẾN THỨC TRỌNG TÂM: a) Định nghĩa và tính chất căn bậc ba. b) Các phép biến đổi căn bậc ba. Mở rộng: Căn bậc n - định nghĩa, tính chất. CÁC DẠNG BÀI MINH HỌA: I. Dạng toán cơ bản. II. Dạng bài nâng cao phát triển tư duy. TRẮC NGHIỆM RÈN PHẢN XẠ Thông qua các phần này, học sinh sẽ được trang bị kiến thức căn bậc ba một cách toàn diện, từ cơ bản đến nâng cao, từ lý thuyết đến bài tập thực hành. Hy vọng rằng tài liệu này sẽ giúp các em phát triển kiến thức và kỹ năng toán học một cách hiệu quả.
Chuyên đề rút gọn biểu thức chứa căn thức bậc hai
Nội dung Chuyên đề rút gọn biểu thức chứa căn thức bậc hai Bản PDF - Nội dung bài viết Chuyên đề rút gọn biểu thức chứa căn thức bậc haiKiến thức trọng tâmCác dạng bài minh họaTrắc nghiệm rèn phản xạ Chuyên đề rút gọn biểu thức chứa căn thức bậc hai Tài liệu này được biên soạn bởi tác giả Toán Học Sơ Đồ, gồm tổng cộng 44 trang. Nội dung tập trung vào kiến thức trọng tâm về cách rút gọn biểu thức chứa căn thức bậc hai, phân tích các dạng bài tập tự luận và trắc nghiệm trong chương trình Đại số lớp 9 chương 1 bài 8. Kiến thức trọng tâm Để rút gọn biểu thức chứa căn bậc hai, chúng ta thường thực hiện các bước sau đây: Bước 1: Xác định điều kiện của biểu thức. Bước 2: Phân tích mẫu thành nhân tử và kết hợp phân tích tử. Bước 3: Bỏ ngoặc và thu gọn biểu thức. Các dạng bài minh họa Trên cơ sở kiến thức trọng tâm, chúng ta có thể gặp các dạng bài toán như sau: Dạng Toán lớp 1: Rút gọn biểu thức. Dạng Toán lớp 2: Rút gọn biểu thức và tính giá trị của biểu thức khi cho giá trị của biến. Dạng Toán lớp 3: Rút gọn biểu thức và tìm x để biểu thức đạt giá trị nguyên. Dạng Toán lớp 4: Rút gọn biểu thức và tìm x để biểu thức thỏa điều kiện cho trước. Dạng Toán lớp 5: Rút gọn biểu thức và tìm x để biểu thức đạt giá trị lớn nhất hoặc nhỏ nhất. Dạng Toán lớp 6: Nâng cao phát triển tư duy toán học. Trắc nghiệm rèn phản xạ Trong tài liệu này cũng có các bài trắc nghiệm rèn luyện kỹ năng phản xạ của học sinh. Qua việc học tập và thực hành các bài tập trong tài liệu này, hy vọng học sinh sẽ nắm vững kiến thức về rút gọn biểu thức chứa căn thức bậc hai để áp dụng vào các bài toán thực tế.
Chuyên đề biến đổi đơn giản biểu thức chứa căn thức bậc hai
Nội dung Chuyên đề biến đổi đơn giản biểu thức chứa căn thức bậc hai Bản PDF - Nội dung bài viết Tài liệu chuyên đề biến đổi đơn giản biểu thức chứa căn thức bậc hai Tài liệu chuyên đề biến đổi đơn giản biểu thức chứa căn thức bậc hai Tài liệu này bao gồm 32 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm trong chuyên đề biến đổi đơn giản biểu thức chứa căn thức bậc hai, nhằm hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 6 – 7. KIẾN THỨC TRỌNG TÂM Đưa thừa số ra ngoài dấu căn. Đưa thừa số vào trong dấu căn. Khử mẫu của biểu thức lấy căn. Trục căn thức ở mẫu. Rút gọn biểu thức có chứa căn bậc hai. CÁC DẠNG TOÁN MINH HỌA DẠNG BÀI MINH HỌA Dạng Toán lớp 1: Biến đổi đơn giản biểu thức chứa căn thức bậc hai các dạng cơ bản. Dạng Toán lớp 2: Nâng cao phát triển tư duy. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ BÀI TẬP TỰ LUYỆN Tài liệu cung cấp các kiến thức cơ bản và nâng cao trong việc biến đổi biểu thức chứa căn thức bậc hai, qua các bài tập minh họa, trắc nghiệm và tự luyện. Điều này giúp học sinh hiểu rõ hơn về cách thức biến đổi và áp dụng vào bài toán thực tế.