Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 9 năm 2022 - 2023 sở GDĐT Nam Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nam Định; kỳ thi được diễn ra vào thứ Sáu ngày 10 tháng 03 năm 2023. Trích dẫn Đề thi chọn học sinh giỏi Toán 9 năm 2022 – 2023 sở GD&ĐT Nam Định : + Cho tam giác nhọn ABC với AB < AC nội tiếp đường tròn(O). Gọi BH và CQ là hai đường cao của tam giác ABC. Tiếp tuyến tại B và tại C của đường tròn (O) cắt nhau tại M. Đoạn thẳng OM cắt BC và cắt đường tròn (O) lần lượt tại N và D. Tia AD cắt BC tại F; AM cắt BC tại E và cắt đường tròn (O) tại điểm thứ hai là K (K khác A). 1) Chứng minh rằng: AB.KC = AC.KB và ABM = AHN. 2) Gọi I là tâm đường tròn ngoại tiếp tam giác AFN. Chứng minh IOM + ADN = 180. 3) Qua E kẻ đường thẳng vuông góc với BC cắt QH tại G. Chứng minh ba điểm A, G, N thẳng hàng. + Lấy 2018 điểm phân biệt ở miền trong của một ngũ giác lồi cùng với 5 đỉnh của ngũ giác đó ta được 2023 điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Biết diện tích của ngũ giác là 1 đơn vị. Chứng minh rằng tồn tại một tam giác có 3 đỉnh lấy từ 2023 điểm đã cho có diện tích không vượt quá 1/4039 đơn vị. + Xét a, b, c là các số thực dương thỏa mãn a + b + c >= 3. Hãy tìm giá trị lớn nhất của biểu thức Q.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Cần Thơ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi chọn học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Cần Thơ : + Phòng Giáo dục và Đào tạo huyện A chọn một nhóm học sinh cấp Tiểu học và học sinh cấp Trung học cơ sở để tham gia Kỳ thi Violympic cấp tỉnh. Ban đầu, Phòng giáo dục và Đào tạo huyện A dự kiến chọn 60% học sinh Tiểu học trong nhóm học sinh dự thi. Do đơn vị tổ chức không đủ máy vi tính nên Phòng giáo dục và Đào tạo huyện A phải giảm số học sinh dự thi của mỗi cấp là 30. Vì vậy số học sinh Tiểu học được chọn chiếm 62% trong nhóm học sinh dự thi. Hỏi trong nhóm học sinh dự thi theo thực tế có bao nhiêu học sinh của mỗi cấp học? + Anh Bình cần rút tiền trong thẻ ATM để chi tiêu cá nhân nhưng lại quên mật khẩu đăng nhập tài khoản. Biết rằng mật khẩu là một số chính phương A có bốn chữ số nếu bớt đi mỗi chữ số của số A một đơn vị thì được số mới là số chính phương có bốn chữ số. Em hãy giúp anh Bình tìm lại mật khẩu đã quên. + Cho hai đường tròn O R và O R với R cắt nhau tại hai điểm A và B Trên tia đối của tia AB lấy điểm C. Qua điểm C kẻ cách tiếp tuyến CD CE với đường tròn O trong đó D, E là các tiếp điểm và E nằm trong đường tròn O. Các đường thẳng AD, AE cắt đường tròn O lần lượt tại M và N (M và N khác A). Tia DE cắt đoạn thẳng MN tại I. Chứng minh: a) Các điểm B N I E cùng nằm trên một đường tròn b) AE MB AB MI. c) Đường thẳng O I’ vuông góc với đường thẳng MN.