Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối học kỳ 1 Toán 9 năm 2021 - 2022 sở GDĐT Bắc Ninh

Thứ Năm ngày 06 tháng 01 năm 2022, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng cuối học kì 1 môn Toán lớp 9 năm học 2021 – 2022. Đề kiểm tra cuối học kỳ 1 Toán 9 năm 2021 – 2022 sở GD&ĐT Bắc Ninh được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 06 câu, chiếm 03 điểm, phần tự luận gồm 03 câu, chiếm 07 điểm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra cuối học kỳ 1 Toán 9 năm 2021 – 2022 sở GD&ĐT Bắc Ninh : + Cho điểm E thuộc nửa đường tròn tâm O, đường kính MN. Tiếp tuyến tại N của nửa đường tròn tâm O cắt đường thẳng ME tại D. Kẻ OI vuông góc với ME tại I. a) Chứng minh rằng tam giác MEN vuông tại E. Từ đó chứng minh 2 DE DM DN. b) Chứng minh rẳng bốn điểm O, I, D, N cùng thuộc một đường tròn. c) Vẽ đường tròn đường kính OD cắt nửa đường tròn tâm O tại điểm thứ hai là A. Chứng minh rằng DA là tiếp tuyến của nửa đường tròn tâm O và DEA DAM. + Cho đường tròn O cm 6 M là một điểm cách điểm O một khoảng 10cm. Qua M kẻ tiếp tuyến với O. Khi đó, khoảng cách từ M đến tiếp điểm là? + Cho hàm số y x 1 có đồ thị là đường thẳng d. a) Hàm số đã cho đồng biến hay nghịch biến trên R? Tại sao? b) Vẽ d trên hệ trục tọa độ Oxy. c) Tính khoảng cách từ gốc tọa độ O đến d. + Cho đường tròn O cm 5 và dây AB cách tâm O một khoảng bằng 3 cm. Độ dài dây AB là? + Cho đường thẳng d y ax 2 đi qua điểm E 1 1. Hệ số góc của đường thẳng d là?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Thạch Thán - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Thạch Thán – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Thạch Thán – Hà Nội : + Cho đường thẳng (d) có phương trình y = ax + b. a) Tìm a, b biết đồ thị hàm số đi qua điểm A(0; 2) và điểm B (-2; -4). b) Tìm phương trình đường thẳng (d’) song song với (d), cắt trục hoành tại điểm 3, cắt trục tung tại C. Tính độ dài AC. + Cho tam giác ABC vuông tại A, đường cao AH, AB = 8cm, AC = 15cm. a) Tính BC, AH, HC. b) Chứng minh SinB = CosC c) Gọi P, Q lần lượt là hình chiếu của H trên AB, AC. Kẻ tiếp tuyến CM với đường tròn ngoại tiếp tứ giác APHQ (M thuộc cung nhỏ AQ). Chứng minh CM2 = CQ.CA. d) Tính PA.PB + AQ.QC. + Thực hiện các phép tính sau.
Đề thi HK1 Toán 9 năm 2021 - 2022 trường THCS THPT Lê Quý Đôn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HK1 Toán 9 năm 2021 – 2022 trường THCS & THPT Lê Quý Đôn – Hà Nội.
Đề thi cuối học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Bế Văn Đàn - Hà Nội
Đề kiểm tra cuối học kỳ 1 môn Toán lớp 9 năm học 2021 – 2022 trường THCS Bế Văn Đàn, quận Đống Đa, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút; kỳ thi được diễn ra vào sáng thứ Năm ngày 06 tháng 01 năm 2022.
Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Cao Bá Quát - Hà Nội
Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Cao Bá Quát – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Cao Bá Quát – Hà Nội : + Cho (O;R), từ điểm S ở ngoài đường tròn (O;R) sao cho OS = 2R, kẻ hai tiếp tuyến SA, SB với đường tròn (A, B là tiếp điểm), gọi H là giao điểm của SO và AB. a) Chứng minh: SO ⊥ AB. b) Chứng minh: OH.OS = R2. c) Chứng minh: ∆SBA đều. d) Vẽ cát tuyến SMN của (O;R), xác định vị trí của cát tuyến SMN để SM + SN đạt giá trị nhỏ nhất. + Cho hàm số bậc nhất : y = (m – 2)x + 3 với m là tham số. a) Tìm m đề hàm số đồng biến. b) Vẽ đồ thị hàm số trên khi m = 3. c) Tính diện tích của tam giác giới hạn bởi đồ thị vừa vẽ ở câu b và hai trục tọa độ. + Cho hai biểu thức 4 x A x 2 và 2 2 B x 2 x 2 với x 0 x 4. a) Tính giá trị của biểu thức A khi x 16. b) Rút gọn biểu thức B. c) Tìm các giá trị nguyên của x để khi 1 B A 4.