Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số chuyên đề về tổ hợp dành cho học sinh giỏi Toán

Tài liệu gồm 67 trang cung cấp thêm kiến thức chuyên sâu về tổ hợp cho học sinh phổ thông, đặc biệt là dành cho những em học sinh có năng khiếu môn toán. Trong tài liệu này, học sinh được tìm hiểu 10 chuyên đề: Chuyên đề 1 : Quy tắc cộng và quy tắc nhân. Mục đích của chuyên đề là dùng hai quy tắc đếm cơ bản tìm hiểu một số tính chất về số palindrome, chuỗi nhị phân, hàm lôgic tự đối ngẫu; từ đó dùng làm cơ sở để giải một số bài toán tổ hợp khác trong các chuyên đề tiếp theo. Chuyên đề 2 : Hoán vị và tổ hợp. Thiết lập song ánh để giải một số bài toán tổ hợp là chủ đề đầu tiên tác giả luận văn đưa ra trong vấn đề này. Tiếp đến là một số bài toán về hoán vị vòng quanh. Chủ đề thứ ba đề cập đến đó là phương pháp chứng minh bằng lý luận tổ hợp. Các em có thể áp dụng phương pháp này vào chứng minh một số công thức tổ hợp mà không phải dùng nhiều đến các công thức tính toán. Chuyên đề 3 : Nguyên lý chuông chim bồ câu. Chuyên đề 4 : Các số Ramsey. Có thể khẳng định rằng trong 6 người bất kỳ luôn tìm được 3 người sao cho hoặc họ quen nhau từng đôi một hoặc họ không quen nhau từng đôi một hay không? Đây là một bài toán đố đã xuất hiện từ lâu và đã từng được coi là một bài toán tồn tại trong lý thuyết tổ hợp. Lời giải của nó là một trường hợp riêng của định lý đã được Ramsey chứng minh vào năm 1928. Định lý này có nhiều mở rộng sâu sắc và quan trọng không những chỉ trong lý thuyết tổ hợp và đồ thị mà còn trong các lĩnh vực khác như Giải tích, Đại số và Hình học. Chuyên đề 5 : Các số Catalan. [ads] Chuyên đề 6 : Các số Stirling. Trong trường hợp này chúng ta làm quen với số Stirling loại 1, số Stirling loại 2. Nêu được vai trò của số Stirling trong các bài toán về sự phân chia một tập hợp cho trước thành hợp của các tập con. Chuyên đề 7 : Hoán vị và tổ hợp tổng quát. Hoán vị tổng quát thường áp dụng vào bài toán sắp xếp các vật trong đó có thể có sự lặp lại. Còn tổ hợp tổng quát là công cụ mạnh trong bài toán về sự phân phối các vật vào các “hộp” mà số lượng vật trong mỗi “hộp” có thể qui định trước. Chuyên đề 8 : Nguyên lý bao hàm và loại trừ. Nguyên lý bao hàm và loại trừ có ứng dụng nhiều trong chứng minh các công thức của tổ hợp, đại số. Ngoài ra ta thường dùng nguyên lý này trong các bài toán định lượng. Chuyên đề 9 : Những sự xáo trộn và những sự sắp đặt trước. Chuyên đề 10 : Đại lượng bất biến. Đại lượng bất biến là một tính chất của bài toán không thay đổi qua sự tác động biến đổi của hệ thống. Nhiều bài toán nhờ phát hiện ra hoặc cố tình tạo ra những biến có tính chất bất biến hoặc đơn điệu bất biến từ đó đưa ta đến kết luận của bài toán.

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn giải các dạng toán tổ hợp và xác suất
Tài liệu gồm 102 trang, tổng hợp lý thuyết, dạng toán và bài tập các chủ đề thuộc chương trình Đại số và Giải tích 11 chương 2: tổ hợp và xác suất. Nội dung tài liệu hướng dẫn giải các dạng toán tổ hợp và xác suất: BÀI 1 . CÁC QUY TẮC ĐẾM CƠ BẢN. + Dạng toán 1. Bài toán sử dụng quy tắc cộng + Dạng toán 2. Bài toán sử dụng quy tắc nhân + Dạng toán 3. Bài toán sử dụng quy tắc bù trừ BÀI 2 . HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. + Dạng toán 1. Giải phương trình, bất phương trình, hệ phương trình. + Dạng toán 2. Các bài toán sử dụng hoán vị. + Dạng toán 3. Các bài toán sử dụng chỉnh hợp. + Dạng toán 4. Các bài toán sử dụng tổ hợp. [ads] BÀI 3 . NHỊ THỨC NEWTON. + Dạng toán 1. Tìm hệ số hoặc số hạng thỏa mãn điều kiện cho trước. + Dạng toán 2. Tìm hệ số trong khai triển nhị thức Niu-tơn (a + b)^n. + Dạng toán 3. Chứng minh hoặc tính tổng. BÀI 4 . BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ. + Dạng toán 1. Chọn hoặc sắp xếp đồ vật. + Dạng toán 2. Chọn hoặc sắp xếp người. + Dạng toán 3. Chọn hoặc sắp xếp số. BÀI 5 . CÁC QUY TẮC TÍNH XÁC SUẤT. BÀI 6 . BÀI TẬP ÔN CHƯƠNG 2.
160 câu vận dụng cao tổ hợp - xác suất ôn thi THPT môn Toán
Tài liệu gồm 79 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 160 câu vận dụng cao (VDC) tổ hợp – xác suất có đáp án và lời giải chi tiết, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 160 câu vận dụng cao tổ hợp – xác suất ôn thi THPT môn Toán: + Cho tập hợp A = {1; 2; 3; 4; . . . ; 100}. Gọi S là tập hợp gồm tất cả các tập con của A, mỗi tập con này gồm 3 phần tử của A và có tổng bằng 91. Chọn ngẫu nhiên một phần tử của S. Xác suất chọn được phần tử có ba số lập thành một cấp số nhân bằng? + Có 10 học sinh lớp A, 8 học sinh lớp B được xếp ngẫu nhiên vào một bản tròn (hai cách xếp được coi là giống nhau nếu cách xếp này là kết quả của cách xếp kia khi ta thực hiện phép quay bàn ở tâm một góc nào đó). Tính xác suất để không có hai học sinh bất kì nào của lớp B đứng cạnh nhau. [ads] + Trong kỳ thi tốt nghiệp THPT năm học 2019 – 2020, mỗi phòng thi gồm 24 thí sinh xếp vào 24 chiếc bàn khác nhau. Bạn An là một thí sinh dự thi 4 môn (Toán, Văn, Ngoại Ngữ, Khoa học tự nhiên), cả 4 lần thi đều thi tại 1 phòng thi duy nhất. Giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên. Tính xác suất để trong 4 lần thi An có đúng 2 lần ngồi vào cùng 1 vị trí.
Các bài toán đếm liên quan đến đa giác và đa giác đều - Lê Thảo
Tài liệu gồm 14 trang, được biên soạn bởi tác giả Lê Thảo (giáo viên Toán tiếp sức chinh phục kì thi tốt nghiệp THPT năm 2020 môn Toán trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn giải các bài toán đếm liên quan đến đa giác và đa giác đều, giúp học sinh học tốt chương trình Đại số và Giải tích 11 chương 2: tổ hợp và xác suất và ôn thi THPT Quốc gia môn Toán. Kết quả 1 . Cho n điểm trong không gian, trong đó không có ba điểm nào thẳng hàng. + Số đường thẳng đi qua hai điểm. + Số vectơ khác vectơ 0 nối hai điểm bất kì. + Số tam giác tạo thành. + Số tứ diện được tạo thành (nếu trong n điểm không có bốn điểm nào đồng phẳng). Kết quả 2 . Cho đa giác lồi n đỉnh. + Số đường chéo của đa giác. + Số giao điểm giữa các đường chéo mà giao điểm nằm trong đa giác (nếu không có ba đường chéo nào đồng qui). + Số tam giác có ba đỉnh là đỉnh của đa giác. + Số tam giác có đúng một cạnh của đa giác và hai cạnh còn lại là đường chéo. + Số tam giác có hai cạnh của đa giác, một cạnh còn lại là đường chéo. + Số tam giác có cạnh đều là các đường chéo của đa giác. [ads] Kết quả 3 . Cho đa giác đều n đỉnh. + Số tam giác vuông. + Số tam giác tù. + Số tam giác nhọn. Kết quả 4 . Cho đa giác đều 2n đỉnh n ≥ 2. + Số hình chữ nhật. + Số tam giác vuông. Kết quả 5 . Cho đa giác đều 3n đỉnh n ≥ 1. + Số tam giác đều. + Số tam giác cân không đều.
Tổng ôn tập TN THPT 2020 môn Toán Tổ hợp và xác suất
Tài liệu gồm 32 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm các chuyên đề: Tổ hợp và xác suất; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Tổ hợp và xác suất: I. KIẾN THỨC CẦN NẮM 1. Quy tắc đếm. + Quy tắc cộng. + Quy tắc nhân. 2. Hoán vị – Chỉnh hợp – Tổ hợp. + Định nghĩa hoán vị và số các hoán vị. + Định nghĩa chỉnh hợp và số các chỉnh hợp. + Định nghĩa tổ hợp và số các tổ hợp. [ads] 3. Tính xác xuất. Tính xác suất bằng định nghĩa. Tính xác suất bằng công thức: + Quy tắc cộng xác suất. + Công thức tính xác suất biến cố đối. + Quy tắc nhân xác suất. II. BÀI TẬP CÙNG MỨC ĐỘ ĐỀ MINH HỌA THPT