Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số chuyên đề về tổ hợp dành cho học sinh giỏi Toán

Tài liệu gồm 67 trang cung cấp thêm kiến thức chuyên sâu về tổ hợp cho học sinh phổ thông, đặc biệt là dành cho những em học sinh có năng khiếu môn toán. Trong tài liệu này, học sinh được tìm hiểu 10 chuyên đề: Chuyên đề 1 : Quy tắc cộng và quy tắc nhân. Mục đích của chuyên đề là dùng hai quy tắc đếm cơ bản tìm hiểu một số tính chất về số palindrome, chuỗi nhị phân, hàm lôgic tự đối ngẫu; từ đó dùng làm cơ sở để giải một số bài toán tổ hợp khác trong các chuyên đề tiếp theo. Chuyên đề 2 : Hoán vị và tổ hợp. Thiết lập song ánh để giải một số bài toán tổ hợp là chủ đề đầu tiên tác giả luận văn đưa ra trong vấn đề này. Tiếp đến là một số bài toán về hoán vị vòng quanh. Chủ đề thứ ba đề cập đến đó là phương pháp chứng minh bằng lý luận tổ hợp. Các em có thể áp dụng phương pháp này vào chứng minh một số công thức tổ hợp mà không phải dùng nhiều đến các công thức tính toán. Chuyên đề 3 : Nguyên lý chuông chim bồ câu. Chuyên đề 4 : Các số Ramsey. Có thể khẳng định rằng trong 6 người bất kỳ luôn tìm được 3 người sao cho hoặc họ quen nhau từng đôi một hoặc họ không quen nhau từng đôi một hay không? Đây là một bài toán đố đã xuất hiện từ lâu và đã từng được coi là một bài toán tồn tại trong lý thuyết tổ hợp. Lời giải của nó là một trường hợp riêng của định lý đã được Ramsey chứng minh vào năm 1928. Định lý này có nhiều mở rộng sâu sắc và quan trọng không những chỉ trong lý thuyết tổ hợp và đồ thị mà còn trong các lĩnh vực khác như Giải tích, Đại số và Hình học. Chuyên đề 5 : Các số Catalan. [ads] Chuyên đề 6 : Các số Stirling. Trong trường hợp này chúng ta làm quen với số Stirling loại 1, số Stirling loại 2. Nêu được vai trò của số Stirling trong các bài toán về sự phân chia một tập hợp cho trước thành hợp của các tập con. Chuyên đề 7 : Hoán vị và tổ hợp tổng quát. Hoán vị tổng quát thường áp dụng vào bài toán sắp xếp các vật trong đó có thể có sự lặp lại. Còn tổ hợp tổng quát là công cụ mạnh trong bài toán về sự phân phối các vật vào các “hộp” mà số lượng vật trong mỗi “hộp” có thể qui định trước. Chuyên đề 8 : Nguyên lý bao hàm và loại trừ. Nguyên lý bao hàm và loại trừ có ứng dụng nhiều trong chứng minh các công thức của tổ hợp, đại số. Ngoài ra ta thường dùng nguyên lý này trong các bài toán định lượng. Chuyên đề 9 : Những sự xáo trộn và những sự sắp đặt trước. Chuyên đề 10 : Đại lượng bất biến. Đại lượng bất biến là một tính chất của bài toán không thay đổi qua sự tác động biến đổi của hệ thống. Nhiều bài toán nhờ phát hiện ra hoặc cố tình tạo ra những biến có tính chất bất biến hoặc đơn điệu bất biến từ đó đưa ta đến kết luận của bài toán.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tổ hợp và xác suất - Phạm Hùng Hải
Tài liệu gồm 75 trang, được biên soạn bởi thầy giáo Phạm Hùng Hải, trình bày lý thuyết cần nhớ, phân loại và phương pháp giải toán, bài tập tự luyện và bài tập trắc nghiệm (có đáp án) chuyên đề tổ hợp và xác suất (Toán 11 phần Đại số và Giải tích chương 2). Chương 2 . TỔ HỢP – XÁC SUẤT 1. §1 – QUY TẮC ĐẾM 1. A LÝ THUYẾT CẦN NHỚ 1. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 1. + Dạng 1.Áp dụng quy tắc cộng hoặc nhân 1. + Dạng 2.Áp dụng vào bài toán chọn đồ vật 2. + Dạng 3.Áp dụng vào bài toán đếm số tự nhiên có n chữ số thỏa mãn điều kiện cho trước 3. C BÀI TẬP TỰ LUYỆN 6. D BÀI TẬP TRẮC NGHIỆM 7. §2 – HOÁN VỊ – CHỈNH HỢP – TỔ HỢP 10. A LÝ THUYẾT CẦN NHỚ 10. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 11. + Dạng 1. Hoán vị và số hoán vị 11. + Dạng 2. Chỉnh hợp và số chỉnh hợp 12. + Dạng 3. Tổ hợp và số tổ hợp 13. + Dạng 4. Công thức hoán vị – chỉnh hợp – tổ hợp 14. C BÀI TẬP TỰ LUYỆN 16. D BÀI TẬP TRẮC NGHIỆM 19. §3 – NHỊ THỨC NIU – TƠN 27. A LÝ THUYẾT CẦN NHỚ 27. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 28. + Dạng 1. Khai triển nhị thức Newton 28. + Dạng 2. Tìm hệ số (số hạng) của xk trong khai triển P(x) 28. + Dạng 3. Tìm số hạng có hệ số nhất trong khai triển biểu thức 31. + Dạng 4. Tính tổng bằng cách sử dụng khai triển nhị thức Newton 32. + Dạng 5. Chứng minh các đẳng thức tổ hợp bằng cách sử dụng khai triển nhị thức Newton 32. C BÀI TẬP TỰ LUYỆN 33. D BÀI TẬP TRẮC NGHIỆM 33. §4 – BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ 36. A LÝ THUYẾT CẦN NHỚ 36. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 37. + Dạng 1. Sử dụng công thức tính xác suất của một biến cố 37. + Dạng 2. Sử dụng biến cố đối 41. + Dạng 3. Quy tắc cộng, quy tắc nhân xác suất 42. C BÀI TẬP TỰ LUYỆN 44. D BÀI TẬP TRẮC NGHIỆM 47. §5 – ĐỀ ÔN TẬP CUỐI CHƯƠNG 55. A Đề số 1 55. B Đề số 2 58. C Đề số 3 60. D Đề số 4 62. E Đề số 5 64. F Đề số 6 66. G Đề số 7 68. H Đề số 8 70. §6 – ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ 72.
Chuyên đề tổ hợp và xác suất - Lê Minh Tâm
Tài liệu gồm 196 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, trình bày lý thuyết trọng tâm, phương pháp giải các dạng toán và bài tập trắc nghiệm chuyên đề tổ hợp và xác suất (Đại số và Giải tích 11 chương 2). BÀI 01 . QUY TẮC ĐẾM. I. CÁC QUY TẮC ĐẾM. II. BÀI TẬP TỰ LUẬN. III. BÀI TẬP TRẮC NGHIỆM. BÀI 02 . TỔ HỢP – CHỈNH HỢP – HOÁN VỊ. I. HOÁN VỊ. II. CHỈNH HỢP. III. TỔ HỢP. IV. BÀI TẬP TỰ LUẬN. + Dạng 1. BÀI TẬP VỀ HOÁN VỊ. + Dạng 2. BÀI TẬP VỀ CHỈNH HỢP. + Dạng 3. BÀI TẬP VỀ TỔ HỢP. + Dạng 4. CHỨNG MINH ĐẲNG THỨC LIÊN QUAN. + Dạng 5. PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH CÓ CHỨA CÁC SỐ. V. BÀI TẬP TRẮC NGHIỆM. BÀI 03 . NHỊ THỨC NEWTON. I. CÔNG THỨC NHỊ THỨC NEWTON. II. TAM GIÁC PASCAL. III. CÁC DẠNG BÀI TẬP. + Dạng 1. KHAI TRIỂN NHỊ THỨC. + Dạng 2. TÌM HỆ SỐ HOẶC SỐ HẠNG THỎA MÃN ĐIỀU KIỆN. + Dạng 3. CHỨNG MINH HOẶC TÍNH TỔNG. IV. BÀI TẬP RÈN LUYỆN. BÀI 04 . BIẾN CỐ & XÁC SUẤT CỦA BIẾN CỐ. I. PHÉP THỬ VÀ KHÔNG GIAN MẪU. II. BIẾN CỐ & XÁC SUẤT CỦA BIẾN CỐ. III. PHÉP TOÁN TRÊN CÁC BIẾN CỐ. IV. CÁC BIẾN CỐ ĐỘC LẬP, CÔNG THỨC NHÂN XÁC SUẤT. V. CÁC DẠNG BÀI TẬP. + Dạng 1. TÍNH XÁC SUẤT CỦA BIẾN CỐ. + Dạng 2. CÁC QUY TẮC TÍNH XÁC SUẤT. VI. BÀI TẬP TỰ LUẬN. VII. BÀI TẬP TRẮC NGHIỆM. BÀI 05 . TỔNG ÔN TẬP CHƯƠNG. I. QUY TẮC ĐẾM. II. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. III. NHỊ THỨC NEWTON. IV. XÁC SUẤT CỦA BIẾN CỐ.
Phân loại và phương pháp giải bài tập tổ hợp và xác suất
Tài liệu gồm 106 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập tổ hợp và xác suất, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2 (Toán 11). BÀI 1 . QUY TẮC ĐẾM. Dạng 1. Quy tắc cộng. Dạng 2. Quy tắc nhân. BÀI 2 . HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. Dạng 1. Hoán vị. Dạng 2. Chỉnh hợp. Dạng 3. Tổ hợp. Dạng 4. Phương trình – bất phương trình. BÀI 3 . NHỊ THỨC NIU-TƠN. Dạng 1. Xác định hệ số hoặc số hạng chứa x^k. Dạng 2. Tìm số hạng đứng chính giữa. Dạng 3. Tìm hệ số lớn nhất trong khai triển nhị thức Niu-tơn của (a + b)^n. Dạng 4. Tìm số hạng hữu tỉ trong khai triển (a + b)^n. Dạng 5. Tính tổng hoặc chứng minh đẳng thức. BÀI 4 – 5 . BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ. Dạng 1. Tính xác suất dựa vào định nghĩa cổ điển. Dạng 2. Quy tắc tính xác suất.
Tổng ôn tập TN THPT 2021 môn Toán Tổ hợp và xác suất
Tài liệu gồm 30 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề tổ hợp và xác suất, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Toán 11 (Đại số và Giải tích 11 chương 2), trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Tổ hợp và xác suất: 1. Mức độ nhận biết: 23 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 03). 2. Mức độ thông hiểu: 21 câu. + Câu hỏi và bài tập (Trang 07). + Đáp án và lời giải chi tiết (Trang 09). 3. Mức độ vận dụng thấp: 17 câu. + Câu hỏi và bài tập (Trang 14). + Đáp án và lời giải chi tiết (Trang 16). 4. Mức độ vận dụng cao: 13 câu. + Câu hỏi và bài tập (Trang 22). + Đáp án và lời giải chi tiết (Trang 24).