Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT chuyên ĐHSP Hà Nội

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT chuyên ĐHSP Hà Nội Bản PDF Thứ Tư ngày 11 tháng 12 năm 2019, trường Trung học Phổ thông chuyên Đại học Sư Phạm Hà Nội tổ chức kì thi kiểm tra chất lượng cuối học kì 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT chuyên ĐHSP Hà Nội gồm có 04 mã đề: 132, 209, 357, 485; đề được biên soạn theo dạng kết hợp giữa trắc nghiệm khách quan và tự luận, phần trắc nghiệm gồm có 20 câu, chiếm 5,0 điểm, phần tự luận gồm có 04 câu, chiếm 5,0 điểm, học sinh có 90 phút để hoàn thành bài thi HK1 Toán lớp 11, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT chuyên ĐHSP Hà Nội : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Hai mặt bên SAB, SCD là các tam giác đều. Gọi G là trọng tâm tam giác SAB, E là điểm di động trên đoạn thẳng BG (E khác B). Cho mp(α) qua E, song song với SA và BC. a) Chứng minh rằng đường thẳng AD song song với mp(α). Tìm giao điểm M, N, P, Q của mp(α) với các cạnh SB, SC, DC, BA. b) Gọi I là giao điểm của QM và PN. Chứng minh I nằm trên một đường thẳng cố định khi điểm E di động trên đoạn BG. c) Chứng minh tam giác IPQ là tam giác đều. Tính diện tích tam giác IPQ theo a. [ads] + Trong các khẳng định sau, khẳng định nào đúng? A. Qua ba điểm phân biệt bất kì có duy nhất một mặt phẳng. B. Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. C. Qua hai điểm phân biệt có duy nhất một mặt phẳng. D. Qua bốn điểm phân biệt bất kì có duy nhất một mặt phẳng. + Cho hình chóp S.ABCD, gọi M, N, P theo thứ tự là trung điểm các cạnh BC, CD và SA. Mặt phẳng (MNP) cắt hình chóp S.ABCD theo thiết diện là hình gì? A. Ngũ giác. B. Tứ giác. C. Lục giác. D. Tam giác. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Hàn Thuyên TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Hàn Thuyên TP HCM Bản PDF Kỳ thi cuối học kì 1 môn Toán lớp 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán lớp 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán lớp 11 sắp tới, Sytu chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Hàn Thuyên, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT Hàn Thuyên – TP HCM : + Một hộp chứa 4 quả cầu đỏ, 5 quả cầu xanh và 7 quả cầu vàng. Lấy ngẫu nhiên cùng lúc 4 quả cầu từ hộp đó. Tính xác suất để trong 4 quả cầu được lấy ra có đúng 1 quả cầu màu đỏ và không quá 2 quả cầu màu vàng. + Trong mặt phẳng Oxy, cho hai điểm A(1;3), B(3;0) và đường thẳng có phương trình (d): 3x – 2y + 1 = 0. Tìm ảnh (d’) của (d) qua phép tịnh tiến theo véctơ AB. + Cho tứ diện ABCD có M, N, P lần lượt là trung điểm AB, BC, CD. Gọi G là trọng tâm tam giác BCD; AG cắt MP tại I, AN cắt CM tại J. Chứng minh rằng ba điểm D, I, J thẳng hàng.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM Bản PDF Kỳ thi cuối học kì 1 môn Toán lớp 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán lớp 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán lớp 11 sắp tới, Sytu chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Gọi X là tập hợp các số tự nhiên gồm 3 chữ số khác nhau được lập nên từ các chữ số 1; 2; 4; 6; 8; 9. Lấy ngẫu nhiên 1 phần tử của X. Tính xác suất để chọn được số chia hết cho 2. + Một đa giác có độ dài các cạnh lập thành một cấp số cộng có công sai bằng 4(cm), cạnh nhỏ nhất bằng 6(cm) và chu vi của đa giác bằng 126(cm). Tính độ dài cạnh lớn nhất của đa giác. + Dùng phương pháp quy nạp, hãy chứng minh: un = 10^n – 2n^3 – n + 2 luôn chia hết cho 3 với mọi số nguyên dương n.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Phú Lâm TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Phú Lâm TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Phú Lâm, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Phú Lâm – TP HCM : + Một bình đựng 10 viên bi chỉ khác nhau về màu, gồm 4 bi màu đỏ và 6 bi màu vàng. Lấy ngẫu nhiên 3 viên bi .Tính xác suất để: a. Lấy được 1 bi đỏ và 2 bi vàng. b. Trong ba viên bi lấy được có ít nhất 1 bi màu vàng. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, H là giao điểm của AC và BD. Gọi M là trung điểm của cạnh SA, N là trung điểm của cạnh SB. a. Xác định giao tuyến của hai mặt phẳng (SAC) và (SBD). b. Chứng minh MN song song với mặt phẳng (SCD). + Cho cấp số nhân (un) có công bội q = 1/4, số hạng đầu u1 = 2. Tìm số hạng thứ 2, thứ 10 của cấp số nhân đó?
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Thị Minh Khai TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Thị Minh Khai TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Lớp 11A14 có 30 học sinh được chia làm 4 tổ: tổ 1 có 6 học sinh, tổ 2 có 7 học sinh, tổ 3 có 8 học sinh, tổ 4 có 9 học sinh. Giáo viên dạy môn Toán của lớp cần chọn ra 10 học sinh để tham dự ngoại khóa.Hỏi có bao nhiêu cách chọn để mỗi tổ có ít nhất 1 học sinh tham dự. + Từ các chữ số của tập hợp M = {1, 2, 3, 4, 5, 6, 7}, người ta tạo ra các số nguyên dương gồm 2 chữ số phân biệt. Tính xác suất để số tạo thành là số lẻ. + Dùng phương pháp qui nạp toán học, chứng minh rằng với mọi số nguyên dương n, ta có: 1.4 + 2.7 + … + n(3n + 1) = n(n + 1)^2.