Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 1 năm 2024 - 2025 trường THCS Quỳnh Phương - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 trường THCS Quỳnh Phương, thị xã Hoàng Mai, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2024 – 2025 trường THCS Quỳnh Phương – Nghệ An : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Nhân ngày sách và văn hóa đọc Việt Nam 21/4/2023, một nhà sách đã có chương trình giảm giá. Bạn An đến mua một quyển sách Toán và một quyển sách Tiếng Anh với tổng giá ghi trên hai quyển sách đó là 150000 đồng. Nhưng quyển sách Toán được giảm giá 20%, quyển sách Tiếng Anh được giảm giá 35% nên An chỉ phải trả tổng số tiền là 108000 đồng. Hỏi giá ghi trên mỗi quyển sách là bao nhiêu? + Nhà An có một cái bể chứa nước hình trụ có đường kính đáy (không tính thành bể) là 1,8m, chiều cao (không tính đáy bể) là 2,5m. Sau khi tháo cạn và dọn sạch bể An dùng máy bơm với lưu lượng nước 3m3/h để bơm nước từ giếng lên bể. An dự tính máy bơm trong thời gian 1,5 giờ sẽ đầy bể. Em hãy tính xem dự tính của An đúng hay sai? (với π ≈ 3,14). + Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn tâm O, bán kính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC. a) Chứng minh rằng AEHF là tứ giác nội tiếp đường tròn. b) Vẽ đường kính AK của đường tròn (O). Chứng minh: AB.AC = 2R.AD. c) Chứng minh rằng OC vuông góc với DE.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Lạng Sơn
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Lạng Sơn tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Lạng Sơn gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Lạng Sơn : + Cho nửa đường tròn (O) đường kính AB. Trên nửa đường tròn (O) lấy điểm C sao cho CA < CB. Trên đoạn OB lấy điểm M sao cho M nằm giữa O và B. Đường thẳng đi qua M vuông góc với AB cắt tia AC tại N, cắt BC tại E. a) Chứng minh tứ giác ACEM nội tiếp trong một đường tròn. b) Tiếp tuyến của nửa đường tròn (O) tại C cắt đường thẳng MN tại F. Chứng minh ∆CEF cân. c) Gọi H là giao điểm của NB với nửa đường tròn (O). Chứng minh HF là tiếp tuyến của nửa đường tròn (O). [ads] + Một mảnh vườn hình chữ nhật có chu vi là 160m và diện tích là 1500m2. Tính chiều dài và chiều rộng của mảnh vườn đó. + Tìm tham số m để phương trình x2 – 5x + m – 3 = 0 có hai nghiệm phân biệt x1; x2 thỏa mãn x1^2 – 2×1.x2 + 3×2 = 1.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Long An
Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Long An tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Long An gồm có 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Long An : + Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng (d1): y = x – 3 và (d2): y = -3x + 1. a. Vẽ đường thẳng (d1) trên mặt phẳng tọa độ Oxy. b. Tìm tọa độ giao điểm của (d1) và (d2) bằng phép tính. c. Viết phương trình đường thẳng (d) có dạng y = ax + b, biết (d) song song với (d1) và cắt trục tung tại điểm có tung độ bằng 7. [ads] + Cho tam giác ABC vuông tại A có đường cao AH, biết AH = 4,8cm và AC = 8cm. Tính độ dài đoạn thẳng CH, BC. + Đường bay lên của một máy bay tạo với phương nằm ngang một góc là 20o (như hình vẽ). Để đạt độ cao là 5000m thì máy bay đó bay được quãng đường bao nhiêu? (kết quả làm tròn đến đơn vị mét).
Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Điện Biên
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Điện Biên tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Điện Biên gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Điện Biên : + Một con Robot được thiết kế có thể đi thẳng, quay một góc 90 sang phải hoặc sang trái. Robot xuất phát từ vị trí A đi thẳng 2m quay sang trái rồi đi thẳng 3m, quay sang phải rồi đi thẳng 5m đến đích tại vị trí B. Tính khoảng cách giữa đích đến và nơi xuất phát của Robot. + Cho phương trình: x2 – 5mx – 4m = 0 (với m là tham số). a) Tìm tất cả các giá trị của m để phương trình có nghiệm kép, tìm nghiệm đó. b) Chứng minh rằng khi phương trình có 2 nghiệm phân biệt x1, x2 thì: x1^2 + 5mx2 + m^2 + 14m + 1 > 0. [ads] + Cho tam giác nhọn ABC nội tiếp đường tròn (O). Đường cao AD, BE cắt nhau tại H. Kéo dài BE, AO cắt đường tròn (O) lần lượt tại F và M. a) Chứng minh ∆HAF cân. b) Gọi I là trung điểm của BC. Chứng minh ba điểm H, I, M thẳng hàng và AH = 2OI. c) Khi BC cố định, xác định vị trí của A trên đường tròn (O) để DH.DA lớn nhất.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Bình Thuận
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Thuận tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bình Thuận gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bình Thuận : + Cho hàm số y = mx + n có đồ thị là (d). Tìm giá trị m và n biết (d) song song với đường thẳng (d’): y = x + 3 và đi qua điểm M (2;4). + Lớp 9A có 80 quyển vở dự định khen thưởng học sinh giỏi cuối năm. Thực tế cuối năm tăng thêm 2 học sinh giỏi, nên mỗi phần thưởng giảm đi 2 quyển vở so với dự định. Hỏi cuối năm lớp 9A có bao nhiêu học sinh giỏi, biết mỗi phần thưởng có số quyển vở bằng nhau. [ads] + Cho nửa đường tròn (O) đường kính AB = 2R. Trên đoạn thẳng OB lấy điểm M (M khác O và B). Trên nửa đường tròn (O) lấy điểm N (N khác A và B). Đường thẳng vuông góc với MN tại N cắt các tiếp tuyến Ax, By của nửa đường tròn (O) lần lượt ở C và D (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). a. Chứng minh tứ giác ACNM nội tiếp. b. Chứng minh AN.MD = NB.CM. c. Gọi E là giao điểm của AN và CM. Đường thẳng qua E và vuông góc với BD, cắt MD tại F. Chứng minh N, F, B thẳng hàng. d. Khi góc ABN = 60 độ, tính theo R diện tích của phần nửa hình tròn tâm O bán kính R nằm ngoài ∆ABN.