Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Đồng Nai

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Đồng Nai Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 THPT môn Toán sở GD&ĐT Đồng Nai Đề thi tuyển sinh vào lớp 10 THPT môn Toán sở GD&ĐT Đồng Nai Kỳ thi tuyển sinh vào lớp 10 trung học phổ thông là bước quan trọng đánh dấu sự chuyển mình trong hành trình học tập của các học sinh tại tỉnh Đồng Nai. Môn thi Toán không chỉ là một phần bắt buộc mà còn là một yếu tố quyết định việc xét tuyển vào các trường phổ thông trên địa bàn. Để giúp thầy cô giáo, phụ huynh và học sinh chuẩn bị tốt cho kỳ thi, chúng tôi xin giới thiệu nội dung và lời giải chi tiết đề thi môn Toán của sở GD&ĐT Đồng Nai năm học 2019 - 2020. Đề thi bao gồm nhiều dạng bài tập, từ những bài toán cơ bản đến những bài toán phức tạp, thách thức. Ví dụ, trong một bài toán về vay mượn tiền, học sinh được yêu cầu tính lãi suất của ngân hàng dựa trên thông tin cụ thể về số tiền, thời hạn và số tiền phải trả sau hai năm. Điều này giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và áp dụng kiến thức Toán vào thực tế. Ngoài ra, đề thi còn đề cập đến các khái niệm và công thức trong hình học, như tính diện tích xung quanh hình nón hay chứng minh tính chất của tam giác nội tiếp đường tròn. Những bài toán này yêu cầu học sinh có kiến thức vững chắc và khả năng suy luận logic để giải quyết. Qua việc giải các bài tập trong đề thi tuyển sinh Toán, học sinh không chỉ nắm vững kiến thức mà còn phát triển kỹ năng tư duy logic, khả năng giải quyết vấn đề. Đây không chỉ là cơ hội để học sinh thể hiện kiến thức mà còn là bước chuẩn bị quan trọng cho hành trình học tập phía trước.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Trà Vinh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Trà Vinh; đề thi gồm hai phần: phần chung dành cho tất cả các thí sinh (07 điểm) và phần tự chọn (03 điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian giao đề). Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Trà Vinh : + Sân vận động Quốc gia Mỹ Đình (Quận Nam Từ Liêm – Hà Nội) có mặt sân bóng đá hình chữ nhật với chiều dài hơn chiều rộng 37m và có diện tích là 7140m2. Hãy tính chiều dài và chiều rộng của mặt sân bóng đá này. + Một máy giặt và một tivi có giá tổng cộng 28 690 000 đồng. Sau khi giảm 10% một máy giặt và 15% một tivi, tổng số tiền mua hai sản phẩm này chỉ còn lại 24 961 000 đồng. Tính giá tiền mỗi sản phẩm trước khi giảm giá. + Cho biểu thức B. Với giá trị nào của x thì B đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Hoà Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 (các trường THPT – PT DTNT THPT tỉnh – PT DTNT THCS&THPT) môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hoà Bình; kỳ thi được diễn ra vào thứ Năm ngày 23 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Hoà Bình : + Bác Bình trồng cam trên một mảnh vườn hình chữ nhật có chiều dài hơn chiều rộng 4m, chu vi của mảnh vườn là 40m. Biết rằng cứ 3m2 bác Bình trồng được 1 cây cam, hỏi bác Bình trồng được bao nhiêu cây cam trên mảnh vườn đó. + Cho tam giác ABC vuông tại A có AB cm 5 BC cm 13. Tính cạnh AC và đường cao AH. + Cho đường tròn tâm O và điểm A nằm ngoài đường tròn, từ A kẻ các tiếp tuyến AM, AN với đường tròn (M, N là các tiếp điểm). Lấy điểm K thuộc cung nhỏ MN, kẻ tiếp tuyến với đường tròn O tại K cắt AM, AN theo thứ tự tại E và F. Gọi giao điểm của OE, OF với MN theo thứ tự là P và Q. 1) Chứng minh rằng: Tứ giác AMON là tứ giác nội tiếp. 2) Chứng minh rằng: 1 2 EOF MON. 3) Chứng minh rằng: ME OF OE MP. 4) Chứng minh rằng: OK, EQ, FP đồng quy.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Quảng Ngãi
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (hệ chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; kỳ thi được diễn ra vào thứ Năm ngày 23 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Quảng Ngãi : + Cho bốn số thực a, b, c, d thỏa mãn a + b + c + d = 10 và a2 + b2 + c2 + d2 = 28. Tìm giá trị lớn nhất của biểu thức T = ab + ac + ad. + Cho đường tròn tâm O, bán kính R và hai điểm B, C cố định trên (O), BC = R. Điểm A thay đổi trên cung lớn BC của (O) sao cho AB < AC. Đường thẳng qua B và vuông góc với AC tại K cắt đường tròn (O) tại P (P khác B). Kẻ PQ vuông góc với đường thẳng BC tại Q. Tia phân giác trong của góc BAC cắt cạnh BC tại D. Tiếp tuyến tại A của (O) cắt đường thẳng BC tại M. a) Chứng minh ABK = KQP và MB/MC = (DB/DC)2. b) Khi A đối xứng với C qua O, tính diện tích tứ giác AMDO theo R. c) Tia AD cắt đường tròn (O) tại E (khác A). Lấy điểm I trên đoạn thẳng AE sao cho EI = EB. Đường thẳng BI cắt đường tròn (O) tại L (khác B). Qua B kẻ đường thẳng vuông góc với LE cắt đường thẳng LC tại F. Xác định vị trí điểm A để độ dài BF lớn nhất. + Một số nguyên dương được gọi là “số đặc biệt” nếu nó thỏa mãn đồng thời các điều kiện sau: i) Các chữ số của nó đều khác 0. ii) Số đó chia hết cho 12 và nếu đổi chỗ các chữ số của nó một cách tùy ý, ta vẫn thu được một số chia hết cho 12. a) Chứng minh rằng một “số đặc biệt” chỉ có thể chứa các chữ số 4 và 8. b) Có tất cả bao nhiêu “số đặc biệt” có 5 chữ số?
Đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2022 - 2023 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Toán) năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào thứ Hai ngày 20 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi CLB Toán Lim: Nguyễn Duy Khương – Nguyễn Hoàng Việt – Trịnh Đình Triển – Nguyễn Văn Hoàng). Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2022 – 2023 sở GD&ĐT Hà Nội : + Cho tam giác ABC ngoại tiếp (I). (I) tiếp xúc BC CA AB tại lần lượt các điểm D E F. 1) Gọi AI ∩ DF = M. Chứng minh rằng: CM ⊥ AI. 2) Gọi AI ∩ DE = N. Chứng minh rằng: DM = DN. 3) Các tiếp tuyến tại M N của (K;KM) cắt nhau tại S. Chứng minh rằng AS ∥ ID. + Cho tập hợp A gồm 70 số nguyên dương không vượt quá 90. Gọi B là tập hợp các số có dạng x + y với x ∈ A và y ∈ A (x, y không nhất thiết phân biệt). 1. Chứng minh 68 ∈ B. 2. Chứng minh B chứa 91 số nguyên liên tiếp. + Tìm hai số nguyên dương m n sao cho m3 m n và n3 m n đều là các số nguyên tố.