Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép cộng và phép trừ số tự nhiên

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép cộng và phép trừ số tự nhiên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Phép cộng số tự nhiên. * Phép cộng hai số tự nhiên a và b cho ta một số tự nhiên c gọi là tổng của chúng. Kí hiệu là a + b = c Số hạng Số hạng Tổng. * Tính chất của phép cộng: + Tính chất giao hoán: Khi đổi chỗ các số hạng trong một tổng thì tổng không thay đổi a b b a. + Tính chất kết hợp: Muốn cộng một tổng hai số với một số thứ ba, ta có thể cộng số thứ nhất với tổng của số thứ hai và số thứ ba a b c a b c a b c. + Tính chất cộng với số 0 a a a 0 0. 2. Phép trừ số tự nhiên. * Với hai số tự nhiên a b đã cho, nếu có số tự nhiên c sao cho a b c thì ta có phép trừ a – b = c. Số bị trừ Số trừ Hiệu. * Chú ý: Trong tập hợp phép trừ a b chỉ thực hiện được nếu a b. 3. Các dạng toán thường gặp. Dạng 1: Thực hành phép cộng, phép trừ số tự nhiên; tìm số chưa biết trong đẳng thức. Phương pháp: Ta sử dụng khái niệm về phép cộng, phép trừ để thực hành phép cộng, phép trừ số tự nhiên; tìm số chưa biết trong đẳng thức. * Trong phép cộng: muốn tìm số hạng ta lấy tổng trừ số hạng đã biết. * Trong phép trừ: + Muốn tìm số bị trừ ta lấy hiệu cộng số trừ. + Muốn tìm số trừ ta lấy số bị trừ trừ đi hiệu. Dạng 2: Áp dụng tính chất của phép cộng, phép trừ vào tính nhanh, giải toán. Phương pháp: Áp dụng một số tính chất sau đây: + Khi cộng nhiều số, ta nên sử dụng tính chất giao hoán, kết hợp để nhóm những số hạng có tổng là số chẵn chục, chẵn trăm (nếu có). + Tổng của hai số không đổi nếu ta thêm vào ở số hạng này và bớt đi ở số hạng kia cùng một số đơn vị. + Hiệu của hai số không đổi nếu ta thêm vào số bị trừ và số trừ cùng một số đơn vị. Nếu tổng là một dãy số có các số hạng cách đều ta có công thức: Số số hạng = (số lớn nhất – số nhỏ nhất): khoảng cách giữa hai số + 1 Tổng = (số lớn nhất + số nhỏ nhất). Số số hạng: 2. B. BÀI TẬP TRẮC NGHIỆM Dạng 1: Thực hành phép cộng, phép trừ số tự nhiên; tìm số chưa biết trong đẳng thức. Dạng 2: Áp dụng tính chất của phép cộng, phép trừ vào tính nhanh, giải toán.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm hình có tâm đối xứng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình có tâm đối xứng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT O là trung điểm của đoạn thẳng AB ta nói hai điểm A và B đối xứng nhau qua O. Hình có tâm đối xứng. Tâm đối xứng. Hình bình hành ABCD là hình có tâm đối xứng và giao điểm O của hai đường chéo là tâm đối xứng của hình bình hành ABCD. Đường tròn (O) là hình có tâm đối xứng. Tâm O là tâm đối xứng của đường tròn (O). B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm hình có trục đối xứng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình có trục đối xứng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Khái niệm hình có trục đối xứng. – Cho hình (H). Nếu có một đường thẳng d chia hình (H) thành hai phần bằng nhau mà khi “gấp” hình theo đường thẳng d thấy hai phần đó “chồng khít” lên nhau thì hình (H) được gọi là hình có trục đối xứng. – Đường thẳng d nói trên được gọi là trục đối xứng của hình (H). 2. Chú ý. – Hình có trục đối xứng còn được gọi là hình đối xứng trục. – Không phải hình nào cũng đều có trục đối xứng. – Một hình có thể có một, hai, ba, … trục đối xứng, có thể có vô số trục đối xứng. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm chu vi và diện tích của một số tứ giác đã học
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề chu vi và diện tích của một số tứ giác đã học, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Chu vi và diện tích các hình. a) Hình vuông: Hình vuông ABCD có cạnh bằng a thì: + Chu vi của hình vuông là C a 4. + Diện tích của hình vuông là 2 S a a a. b) Hình chữ nhật: Hình chữ nhật ABCD có chiều dài là a, chiều rộng bằng b thì: + Chu vi của hình chữ nhật là C 2 a b. + Diện tích của hình chữ nhật là S a b. c) Hình thoi: Hình thoi ABCD có độ dài cạnh là a và độ dài hai đường chéo là m và n thì: + Chu vi của hình thoi là C a 4. + Diện tích của hình thoi là 2 1 S m n. d) Hình bình hành: Hình bình hành ABCD có độ dài hai cạnh là a, b và độ dài đường cao ứng với cạnh a là h thì: + Chu vi của hình bình hành là C 2 a b. + Diện tích của hình bình hành là S a h. e) Hình thang cân: Hình thang cân ABCD có độ dài hai cạnh đáy là a, b; độ dài cạnh bên là c và độ dài đường cao ứng với cạnh đáy là h thì: + Chu vi của hình thang cân là C a b 2c. + Diện tích của hình bình thang cân là 2 S a b h. 2. Các dạng toán thường gặp. Dạng 1: Tính diện tích các hình đã học. Áp dụng công thức tính diện tích của các hình. Dạng 2: Tính một yếu tố của hình khi biết chu vi, diện tích của hình đó. Từ công thức tính chu vi, diện tích các hình, thay các đại lượng đã biết vào công thức rồi rút ra đại lượng cần tính. Dạng 3: Bài toán thực tế. Sắp xếp được mối liên hệ giữa các kiến thức đã học để giải bài toán. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm hình chữ nhật, hình thoi, hình bình hành, hình thang cân
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình chữ nhật, hình thoi, hình bình hành, hình thang cân, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Hình chữ nhật. Hình chữ nhật ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Hai cạnh đối diện bằng nhau: AD = BC; AB = DC. + Bốn góc đỉnh A, B, C, D bằng nhau và bằng góc vuông. + Hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường: OA = OC = OB = OD. 2. Hình thoi. Hình thoi ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Bốn cạnh bằng nhau: AD = BC = AB = DC. + Hai đường chéo vuông góc với nhau: AC, BD vuông góc với nhau. 3. Hình bình hành. Hình bình hành ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Hai cạnh đối diện bằng nhau: AD = BC; AB = DC. + Hai cặp góc đối diện bằng nhau: góc đỉnh A bằng góc đỉnh C, góc đỉnh B bằng góc đỉnh D. + Hai đường chéo cắt nhau tại trung điểm mỗi đường: OA = OC = OB = OD. 4. Hình thang cân. Hình thang cân ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đáy song song: AB song song với CD. + Hai cạnh bên bằng nhau: AD = BC. + Hai góc kề 1 đáy bằng nhau: góc đỉnh A bằng góc đỉnh C, góc đỉnh B bằng góc đỉnh D. + Hai đường chéo bằng nhau: AC = BD. B. BÀI TẬP TRẮC NGHIỆM