Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra KSCL Toán 12 đầu năm 2022 - 2023 trường THPT Hàm Long - Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra khảo sát chất lượng môn Toán 12 đầu năm học 2022 – 2023 trường THPT Hàm Long, tỉnh Bắc Ninh; đề thi gồm 06 trang với 50 câu hỏi và bài toán theo hình thức trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), đề thi có đáp án mã đề 101 102 103 104 105 106. Trích dẫn Đề kiểm tra KSCL Toán 12 đầu năm 2022 – 2023 trường THPT Hàm Long – Bắc Ninh : + Trong các mệnh đề dưới đây, mệnh đề nào sai? A. Hình chóp tứ giác đều có hình chiếu vuông góc của đỉnh lên đáy trùng với tâm của đáy. B. Hình chóp tứ giác đều có tất cả các cạnh bằng nhau. C. Hình chóp tứ giác đều có đáy là hình vuông. D. Hình chóp tứ giác đều có các cạnh bên bằng nhau. + Cho hình chóp S.ABC có SA ⊥ (ABC), đáy ABC vuông tại A. Mệnh đề nào sau đây sai: A. góc giữa (SBC) và (SAC) là góc SCB B. (SAB) ⊥ (ABC) C. (SAB) ⊥ (SAC) D. Vẽ AH ⊥BC,H thuộc BC. Góc giữa (SBC) và (ABC) là góc AHS. + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của AD và BC. Giao tuyến của (SMN) và (SAC) là: A. SO (O là tâm của ABCD) B. SD C. SG (G là trung điểm AB) D. SF (F là trung điểm CD).

Nguồn: toanmath.com

Đọc Sách

Đề KSCL lớp 12 môn Toán thi TN THPT 2024 lần 1 trường THPT Ba Đình Thanh Hóa
Nội dung Đề KSCL lớp 12 môn Toán thi TN THPT 2024 lần 1 trường THPT Ba Đình Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 ôn thi tốt nghiệp Trung học Phổ thông năm học 2023 – 2024 lần 1 trường THPT Ba Đình, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề KSCL Toán lớp 12 thi TN THPT 2024 lần 1 trường THPT Ba Đình – Thanh Hóa : + Cho hình vuông ABCD cạnh a. Trên đường thẳng vuông góc với (ABCD) tại A lấy điểm S di động không trùng với A. Hình chiếu vuông góc của A lên SB SD lần lượt tại H K. Tìm giá trị lớn nhất của thể tích khối tứ diện ACHK. + Với hai số thực a b bất kì, ta kí hiệu 2 3 a b f x xa xb x. Biết rằng luôn tồn tại duy nhất số thực 0 x để 0 min a b a b x R f xf với mọi số thực a b thỏa mãn b a a b và 0 a b. Số 0 x bằng? + Cho hình lập phương có cạnh bằng a và một hình trụ có hai đáy là hai hình tròn nội tiếp hai mặt đối diện của hình lập phương. Gọi 1 S là diện tích 6 mặt của hình lập phương 2 S là diện tích xung quanh của hình trụ. Hãy tính tỉ số 2 1 S S. File WORD (dành cho quý thầy, cô):