Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phát triển đề tham khảo tốt nghiệp THPT 2021 môn Toán - Lê Văn Đoàn

Tài liệu gồm 146 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, phát triển đề tham khảo tốt nghiệp THPT 2021 môn Toán, với những câu hỏi và bài tập trắc nghiệm tương tự, có đáp án; tài liệu giúp học sinh lớp 12 rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2020 – 2021 do Bộ Giáo dục và Đào tạo tổ chức. 50 dạng toán đề minh họa TN THPT 2021 môn Toán: 1. Hoán vị – Chỉnh hợp – Tổ hợp: Cách chọn người / vật đơn giản. 2. Cấp số cộng: Cho trước u1 và ui. 3. Đơn điệu hàm số: Biết bảng biến thiên. 4. Cực trị hàm số: Biết bảng biến thiên. 5. Cực trị hàm số: Biết bảng xét dấu f'(x). 6. Tiệm cận đồ thị hàm số. Tìm TCĐ – TCN khi biết trước ĐTHS tường minh. 7. Khảo sát đồ thị: Tìm hàm số khi biết đồ thị. 8. Tương giao hàm số: Đồ thị cắt trục tung – trục hoành. 9. Logarit: Rút gọn biểu thức logarit đơn giản. 10. Đạo hàm hàm số mũ: Hàm y = a^x. 11. Lũy thừa: Rút gọn lũy thừa đơn giản. 12. Phương trình mũ: Phương trình a^f(x) = b. 13. Phương trình logarit: Phương trình log a (kx + q) = b. 14. Nguyên hàm đa thức: Đa thức bậc 2 – 3 – 4. 15. Nguyên hàm lượng giác: Lượng giác: f(x) = cos(u(x)). 16. Tích phân: Tính tích phân dựa vào tính chất. 17. Tích phân: Đa thức. 18. Số phức: Tìm số phức liên hợp. 19. Số phức: Các phép toán cộng – trừ. 20. Số phức: Tìm điểm biểu diễn của số phức cho trước. 21. Khối đa diện: Tính V biết trước chiều cao – diện tích đáy. 22. Khối đa diện: Tính V biết các kích thước khối hộp. 23. Khối tròn xoay: Xác định công thức tính V. 24. Khối tròn xoay: Tính diện tích xung quanh biết r và l. 25. Hệ Oxyz: Tìm tọa độ trung điểm. 26. Hệ Oxyz: Tìm tâm – bán kính mặt cầu. 27. Phương trình mặt phẳng: Tìm mặt phẳng đi qua điêm cho trước. 28. Phương trình đường thẳng: Tìm VTCP đường thẳng đi qua hai điểm cho trước. 29. Xác suất: Tính xác suất chọn được số chẵn – lẻ. 30. Đơn điệu hàm số: Tìm HS đơn điệu trên R. 31. GTLN – GTNN: Tìm max – min trên đoạn. 32. BPT mũ: Giải BPT mũ. 33. Tích phân: Tính tích phân dựa vào tính chất. 34. Số phức: Tính module của tích hai số phức. 35. Góc giữa đường – mặt: Tính góc giữa đường và mặt trong hình hộp. 36. Khoảng cách từ điểm – mặt: Tính khoảng cách từ đỉnh đến mặt đáy của chóp đều. 37. Phương trình mặt cầu: Viết PTMC có tâm và đi qua điểm cho trước. 38. Phương trình đường thẳng: Viết PTĐT đi qua hai điểm cho trước. 39. GTLN – GTNN: Tìm max – min hàm hợp trên đoạn. 40. Bất phương trình mũ: Tìm cặp nghiệm nguyên thỏa BPT. 41. Tích phân: Tính TP hàm ẩn. 42. Số phức: Tìm số phức thỏa nhiều điều kiện cho trước. 43. Khối đa diện: Tính V biết chiều cao khối đa diện và góc giữa mặt bên và mặt đáy. 44. Khối đa diện: Bài toán thực tế. 45. Phương trình đường thẳng: Viết PTĐT thỏa nhiều điều kiện với MP, đường thẳng khác. 46. Cực trị: Tìm cực trị hàm hợp khi biết bảng xét dấu. 47. Phương trình logarit – mũ: Tìm tham số để biến số phụ thuộc vào biểu thức cho trước. 48. Ứng dụng tích phân: Tìm tỉ số diện tích, biết đồ thị hàm số. 49. Số phức: Cực trị số phức. 50. Phương trình mặt phẳng: Tìm hệ số PTMP thỏa mãn các điều kiện cho trước (lồng ghép với khối tròn xoay).

Nguồn: toanmath.com

Đọc Sách

Casio skill trắc nghiệm Nguyễn Thế Anh, Nguyễn Thế Lực
Nội dung Casio skill trắc nghiệm Nguyễn Thế Anh, Nguyễn Thế Lực Bản PDF - Nội dung bài viết Tài liệu Casio skill trắc nghiệm ver 1.0 Tài liệu Casio skill trắc nghiệm ver 1.0 Tài liệu Casio skill trắc nghiệm ver 1.0 được viết bởi 2 tác giả Nguyễn Thế Anh và Nguyễn Thế Lực. Tài liệu này bao gồm 386 trang với nhiều nội dung hấp dẫn và hữu ích dành cho người đọc. Các thông tin được trình bày một cách logic và chi tiết, giúp người đọc dễ hiểu và áp dụng vào thực tế.
Bí kíp Thế Lực 2016
Nội dung Bí kíp Thế Lực 2016 Bản PDF - Nội dung bài viết Bí kíp Thế Lực 2016 - Phân tích chi tiết về sản phẩm Bí kíp Thế Lực 2016 - Phân tích chi tiết về sản phẩm Tài liệu Bí kíp Thế Lực 2016 là bản scan đầy đủ từ cuốn sách cùng tên của tác giả Nguyễn Thế Lực. Sách gồm 216 trang, tập trung vào các kinh nghiệm giải toán đối với 3 câu phân loại trong đề thi THPT Quốc gia: Phương trình, Oxy và Bất đẳng thức. Phần nội dung tài liệu được chia thành các phần sau: I. Bí kíp phương trình - bất phương trình: 1. Giới thiệu, yêu cầu và các phương pháp cơ bản cần nắm vững 2. Basic Skill: Bao gồm cách giải phương trình cho nghiệm đẹp và nghiệm xấu, đánh giá sau liên hợp và truy ngược dấu, cũng như một số bài khó bấm máy thường liên quan đến ẩn phụ 3. Advance Skill: Kỹ năng tiên tiến như ép liên hợp và ép hàm số 4. Một số bài tập tự luyện có hướng dẫn II. Bí kíp hệ phương trình: 1. Khái quát hướng giải hệ phương trình cơ bản và kiến thức cần nắm 2. Cách tìm mối quan hệ giữa x và y bằng máy tính từ 1 phương trình 3. Dạng hệ phải kết hợp 2 phương trình 4. Một số kỹ năng bổ trợ giải hệ phương trình 5. Các bài tập rèn luyện III. Bí kíp Oxy: 1. Các kiến thức cần nhớ 2. Tư duy giải Oxy 3. Các bổ đề phụ cần biết, cách chứng minh và áp dụng 4. Chuẩn hóa Oxy 5. Các bước làm một bài toán Oxy 6. Hệ thống bài tập rèn luyện có lời giải IV. Bí kíp bất đẳng thức: 1. Kiến thức cần nhớ và hướng làm chung 2. Bấm máy cày dấu bằng "=" 3. Một số bất đẳng thức đánh giá tại biên 4. Kinh nghiệm giải bất đẳng thức 5. Hệ thống bài tập rèn luyện Đây là tài liệu cực kỳ hữu ích để học sinh tự luyện tập và nắm vững kiến thức các phần phức tạp trong môn Toán. Bí kíp Thế Lực 2016 sẽ giúp bạn hiểu rõ hơn về các phương trình, hệ phương trình, Oxy, và bất đẳng thức, từ cơ bản đến nâng cao.
Các chuyên đề luyện thi THPT Quốc gia môn Toán Nguyễn Văn Lực
Nội dung Các chuyên đề luyện thi THPT Quốc gia môn Toán Nguyễn Văn Lực Bản PDF - Nội dung bài viết Tài liệu chuyên đề luyện thi THPT Quốc gia môn Toán Nguyễn Văn Lực Tài liệu chuyên đề luyện thi THPT Quốc gia môn Toán Nguyễn Văn Lực Tài liệu chuyên đề luyện thi THPT Quốc gia môn Toán của tác giả Nguyễn Văn Lực bao gồm 372 trang. Được xây dựng dựa trên hệ thống bài tập được chọn lọc và giải chi tiết, được phân loại theo từng chuyên đề. Đây sẽ là công cụ hữu ích giúp học sinh ôn tập, nắm vững kiến thức và rèn luyện kỹ năng làm bài thi môn Toán một cách hiệu quả.
Kĩ năng sử dụng máy tính Casio trong giải toán Bùi Thế Việt
Nội dung Kĩ năng sử dụng máy tính Casio trong giải toán Bùi Thế Việt Bản PDF - Nội dung bài viết Kĩ Năng Sử Dụng Máy Tính Casio Trong Giải Toán Kĩ Năng Sử Dụng Máy Tính Casio Trong Giải Toán Trong các dụng cụ học tập được phép mang vào phòng thi trong các kỳ thi đại học, kỳ thi THPT Quốc Gia thì máy tính cầm tay là dụng cụ không thể thiếu giúp chúng ta tính toán nhanh chóng. Máy tính cầm tay không chỉ giúp chúng ta tính toán một cách chính xác mà còn là một trợ thủ đắc lực trong việc giải toán, đặc biệt là giải Phương Trình, Hệ Phương Trình, Bất Phương Trình, Bất Đẳng Thức và nhiều loại toán khác. Tác giả Bùi Thế Việt là một người rất đam mê với những kỹ năng, thủ thuật sử dụng máy tính cầm tay trong giải toán. Đã có nhiều trường hợp tác giả áp dụng những kỹ năng này vào các kỳ thi và đạt được kết quả đáng kinh ngạc. Việt chia sẻ rằng chỉ cần vài phút, anh đã giải quyết một câu Phương Trình Vô Tỷ một cách chính xác và nhanh chóng. Để sử dụng máy tính Casio một cách hiệu quả, hãy đến với chuyên đề Kỹ Năng Sử Dụng Casio Trong Giải Toán. Chuyên đề này giới thiệu 8 kỹ năng sử dụng máy tính Casio trong việc giải các loại toán khác nhau. Các thủ thuật bao gồm: Thủ thuật sử dụng Casio để rút gọn biểu thức. Thủ thuật sử dụng Casio để giải phương trình bậc 4. Thủ thuật sử dụng Casio để tìm nghiệm phương trình. Thủ thuật sử dụng Casio để phân tích đa thức thành nhân tử một ẩn. Thủ thuật sử dụng Casio để phân tích đa thức thành nhân tử hai ẩn. Thủ thuật sử dụng Casio để giải hệ phương trình. Thủ thuật sử dụng Casio để tích nguyên hàm, tích phân. Thủ thuật sử dụng Casio để giải bất đẳng thức. Đến với chuyên đề này, bạn sẽ được trải nghiệm những thủ thuật đặc biệt mà máy tính Casio có thể mang lại. Hãy học ngay để nâng cao khả năng giải toán của mình và đạt được kết quả xuất sắc trong các kỳ thi.