Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn tập phương pháp tọa độ trong không gian cơ bản

Tài liệu gồm 90 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian cơ bản lớp 12 THPT, giúp học sinh rèn luyện khi học chương trình Hình học 12 chương 3. + Đại cương hệ trục tọa độ Oxyz p1. + Đại cương hệ trục tọa độ Oxyz p2. + Đại cương hệ trục tọa độ Oxyz p3. + Đại cương hệ trục tọa độ Oxyz p4. + Đại cương hệ trục tọa độ Oxyz p5. + Đại cương hệ trục tọa độ Oxyz p6. + Đại cương hệ trục tọa độ Oxyz p7. + Đại cương hệ trục tọa độ Oxyz p8. + Mặt phẳng Oxyz p1. + Mặt phẳng Oxyz p2. + Mặt phẳng Oxyz p3. + Mặt phẳng Oxyz p4. + Mặt phẳng Oxyz p5. + Mặt phẳng Oxyz p6. + Mặt phẳng Oxyz p7. + Mặt phẳng Oxyz p8. + Mặt cầu Oxyz p1. + Mặt cầu Oxyz p2. + Mặt cầu Oxyz p3. + Mặt cầu Oxyz p4. + Mặt cầu Oxyz p5. + Mặt cầu Oxyz p6. + Mặt cầu Oxyz p7. + Mặt cầu Oxyz p8. + Đường thẳng Oxyz p1. + Đường thẳng Oxyz p2. + Đường thẳng Oxyz p3. + Đường thẳng Oxyz p4. + Đường thẳng Oxyz p5. + Đường thẳng Oxyz p6. + Đường thẳng Oxyz p7. + Đường thẳng Oxyz p8. + Liên kết mặt phẳng – đường thẳng Oxyz p1. + Liên kết mặt phẳng – đường thẳng Oxyz p2. + Liên kết mặt phẳng – đường thẳng Oxyz p3. + Liên kết mặt phẳng – đường thẳng Oxyz p4. + Liên kết mặt phẳng – đường thẳng Oxyz p5. + Liên kết mặt phẳng – đường thẳng Oxyz p6. + Liên kết mặt phẳng – đường thẳng Oxyz p7. + Liên kết mặt phẳng – đường thẳng Oxyz p8. + Tổng hợp tọa độ không gian Oxyz p1. + Tổng hợp tọa độ không gian Oxyz p2. + Tổng hợp tọa độ không gian Oxyz p3. + Tổng hợp tọa độ không gian Oxyz p4. + Tổng hợp tọa độ không gian Oxyz p5. + Tổng hợp tọa độ không gian Oxyz p6. + Tổng hợp tọa độ không gian Oxyz p7. + Tổng hợp tọa độ không gian Oxyz p8.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hình học giải tích không gian - Lưu Huy Thưởng
Tài liệu gồm 60 trang với phần lý thuyết, công thức, bài tập có đáp án và tuyển tập các bài hình học tọa độ không gian trong đề thi THPT, Đại học – Cao đẳng. Tài liệu do thầy Lưu Huy Thưởng biên soạn. BÀI 1: MỞ ĐẦU BÀI 2: PHƯƠNG TRÌNH MẶT CẦU BÀI 3: PHƯƠNG TRÌNH MẶT PHẲNG Vấn đề 1: Viết phương trình mặt phẳng Để lập phương trình mặt phẳng (α) ta cần xác định một điểm thuộc (α) và một VTPT của nó Vấn đề 2: Vị trí tương đối của hai mặt phẳng Vấn đề 3: Khoảng cách từ một điểm đến một mặt phẳng Khoảng cách giữa hai mặt phẳng song song.Hình chiếu của một điểm trên mặt phẳng. Điểm đối xứng của một điểm qua mặt phẳng Vấn đề 4: Góc giữa hai mặt phẳng BÀI 4: PHƯƠNG TRÌNH ĐƯỜNG THẲNG Vấn đề 1: Lập phương trình đường thẳng Để lập phương trình đường thẳng d ta cần xác định một điểm thuộc d và một VTCP của nó Vấn đề 2: Vị trí tương đối giữa hai đường thẳng Để xét VTTĐ giữa hai đường thẳng, ta có thể sử dụng một trong các phương pháp sau: + Phương pháp hình học: Dựa vào mối quan hệ giữa các VTCP và các điểm thuộc các đường thẳng + Phương pháp đại số: Dựa vào số nghiệm của hệ phương trình các đường thẳng Vấn đề 3: Vị trí tương đối giữa đường thẳng và mặt phẳng Để xét VTTĐ giữa đường thẳng và mặt phẳng, ta có thể sử dụng một trong các phương pháp sau: + Phương pháp hình học: Dựa vào mối quan hệ giữa VTCP của đường thẳng và VTPT của mặt phẳng + Phương pháp đại số: Dựa vào số nghiệm của hệ phương trình đường thẳng và mặt phẳng Vấn đề 5: Khoảng cách Vấn đề 6: Góc Vấn đề 7: Một số vấn đề khác [ads] CÁC DẠNG TOÁN PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN I. VIẾT PHƯƠNG TRÌNH MẶT PHẲNG + Dạng 1: Cơ bản + Dạng 2: Phương trình mặt phẳng liên quan tới mặt cầu + Dạng 3: Viết phương trình mặt phẳng liên quan đến khoảng cách + Dạng 4: Viết phương trình mặt phẳng liên quan đến góc + Dạng 5: Viết phương trình mặt phẳng liên quan đến tam giác II. VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẲNG + Dạng 1: Viết phương trình đường thẳng bằng cách xác định vectơ chỉ phương + Dạng 2: Viết phương trình đường thẳng liên quan đến một đường thẳng khác + Dạng 3: Viết phương trình đường thẳng liên quan đến hai đường thẳng khác + Dạng 4: Viết phương trình đường thẳng liên quan đến khoảng cách + Dạng 5: Viết phương trình đường thẳng liên quan đến góc + Dạng 6: Viết phương trình đường thẳng liên quan đến tam giác III. VIẾT PHƯƠNG TRÌNH MẶT CẦU IV. TÌM ĐIỂM THOẢ ĐIỀU KIỆN CHO TRƯỚC + Dạng 1: Xác định điểm thuộc mặt phẳng + Dạng 2: Xác định điểm thuộc đường thẳng + Dạng 3: Xác định điểm thuộc mặt cầu + Dạng 4: Xác định điểm trong không gian + Dạng 5: Xác định điểm trong đa giác CÁC BÀI TOÁN LIÊN QUAN ĐẾN MIN – MAX
Chuyên đề HH giải tích không gian - Trung tâm LTĐH Vĩnh Viễn
Tài liệu gồm 51 trang, tóm tắt công thức, phân dạng và giải chi tiết các bài toán chuyên đề HH giải tích không gian. Tài liệu gồm các vấn đề: + Vấn đề 1. Mặt phẳng và đường thẳng + Vấn đề 2. Hình chiếu và đối xứng + Vấn đề 3. Khoảng cách và góc + Vấn đề 4. Vị trí tương đối của đường thằng và mặt phẳng + Vấn đề 5. Mặt cầu [ads]
Chuyên đề trắc nghiệm vị trí tương đối, góc và khoảng cách
Tài liệu gồm 34 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề vị trí tương đối, góc và khoảng cách, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. VẤN ĐỀ 1. VỊ TRÍ TƯƠNG ĐỐI. 1. Vị trí tương đối của hai mặt phẳng. 2. Vị trí tương đối của đường thẳng và mặt phẳng. 3. Vị trí tương đối của hai đường thẳng. VẤN ĐỀ 2. BÀI TOÁN VỀ GÓC. 1. Góc giữa hai mặt phẳng. 2. Góc giữa hai đường thẳng. 3. Góc giữa đường thẳng và mặt phẳng. VẤN ĐỀ 3. BÀI TOÁN VỀ KHOẢNG CÁCH. 1. Khoảng cách từ một điểm đến một mặt phẳng. 2. Khoảng cách giữa hai mặt phẳng song song. 3. Khoảng cách từ điểm đến đường thẳng. 4. Khoảng cách giữa hai đường thẳng chéo nhau. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm tích có hướng của hai vectơ và ứng dụng
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích có hướng của hai vectơ và ứng dụng, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. 1. Công thức định thức. 2. Định nghĩa tích có hướng của hai vectơ. 3. Tính chất. 4. Ứng dụng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.