Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra KSCĐ lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT Xuân Hòa Vĩnh Phúc

Nội dung Đề kiểm tra KSCĐ lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT Xuân Hòa Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra khảo sát chuyên đề lần 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT Xuân Hòa, tỉnh Vĩnh Phúc; đề thi mã đề 076, gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, có đáp án. Trích dẫn Đề kiểm tra KSCĐ lần 1 Toán lớp 11 năm 2023 – 2024 trường THPT Xuân Hòa – Vĩnh Phúc : + Tìm hiểu tiền công khoan giếng ở hai cơ sở khoan giếng, người ta được biết: – Ở cơ sở A: Giá của mét khoan đầu tiên là 50.000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 10000 đồng so với giá của mét khoan ngay trước. – Ở cơ sở B: Giá của mét khoan đầu tiên là 50.000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 8% giá của mét khoan ngay trước. Một người muốn chọn một trong hai cơ sở nói trên để thuê khoan một cái giếng sâu 20 mét, một cái giếng sâu 30 mét ở hai địa điểm khác nhau. Hỏi người ấy nên chọn cơ sở khoan giếng nào cho từng giếng để chi phí khoan hai giếng là ít nhất. Biết chất lượng và thời gian khoan giếng của hai cơ sở là như nhau. A. Chọn cở sở A khoan giếng 30 mét, chọn cơ sở B khoan giếng 20 mét. B. Chọn cở sở A khoan giếng 20 mét, chọn cơ sở B khoan giếng 30 mét. C. Chọn cơ sở A để khoan cả hai giếng. D. Chọn cơ sở B để khoan cả hai giếng. + Cho cấp số cộng (un) có: 1 u d 1 1. Khẳng định nào sau đây là đúng? A. Cấp số cộng này không có hai số 0,5 và 0,6. B. Số hạng thứ 4 của cấp số cộng này là: 3,9. C. Số hạng thứ 7 của cấp số cộng này là: 0,6. D. Số hạng thứ 6 của cấp số cộng này là: 0,5. + Xét tính tăng, giảm và bị chặn của dãy số n u biết: 2 13 3 2 n n u n A. Dãy số không tăng không giảm, không bị chặn B. Dãy số tăng, bị chặn C. Dãy số giảm, bị chặn D. Cả A, B, C đều sai. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề Olympic 30 tháng 4 Toán 11 năm 2023 trường chuyên Lê Hồng Phong - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic truyền thống 30 tháng 4 môn Toán 11 lần thứ XXVII năm 2023 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào thứ Bảy ngày 08 tháng 04 năm 2023. Trích dẫn Đề Olympic 30 tháng 4 Toán 11 năm 2023 trường chuyên Lê Hồng Phong – TP HCM : + Cho p là số nguyên tố có dạng 20n + 7. Gọi S là tập hợp tất cả các số nguyên dương có thể biểu diễn dưới dạng a2 + 5b2 với a và b là hai số nguyên tố cùng nhau. a. Chứng minh rằng tồn tại số nguyên dương k sao cho kp thuộc S. b. Tìm số nguyên dương k0 nhỏ nhất sao cho k0p thuộc S. + Cho tam giác nhọn, không cân ABC nội tiếp đường tròn (O;R). Các đường phân giác trong BX, CY của tam giác ABC cắt nhau tại I. J là trung điểm cung nhỏ BC của(O;R). Đường thẳng XY cắt các đường thẳng AI, BC lần lượt tại L, T. a. Chứng minh. b. Chứng minh đường thẳng qua I vuông góc với XY cắt đường thẳng OJ tại điểm O’ đối xứng với điểm O qua điểm J. c. Đường tròn nội tiếp (I) của tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi G là điểm đối xứng của D qua đường thẳng EF. Biết các đường thẳng DL, AG cắt nhau tại W, chứng minh WI vuông góc với XY. + Cho a < b < c là ba nghiệm thực của phương trình 8×3 – 4×2 – 4x + 1 = 0. a. Lập phương trình bậc ba có 3 nghiệm là 1 – 2a2, 1 – 2b2, 1 – 2c2. b. Chứng minh rằng: 2a2 + b = 2b2 + c = 2c2 + a = 1.
Đề học sinh giỏi Toán 11 cấp tỉnh năm 2022 - 2023 sở GDĐT Bình Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán 11 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Bình Định : + Cho dãy số (un) xác định bởi: u1 = 1; u2 = 4; un+2 = 7un+1 – un – 2 với mọi n thuộc N*. Chứng minh mọi số hạng un của dãy đều là số chính phương. Gọi S là tập hợp tất cả các số tự nhiên có tám chữ số đôi một khác nhau. Chọn ngẫu nhiên một số trong tập S. Tính xác suất để số được chọn chia hết cho 45. + Cho tam giác ABC nội tiếp trong đường tròn tâm O. Một đường tròn tâm J tiếp xúc với hai cạnh CA, CB lần lượt tại D, E và tiếp xúc trong với đường tròn (O) tại F. Gọi P, Q lần lượt là giao điểm thứ hai của FD, FE với đường tròn (O). Chứng minh rằng các đường thẳng AQ, BP, DE đồng quy tại tâm đường tròn nội tiếp tam giác ABC. + Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABC và M là một điểm bất kỳ thuộc miền trong tam giác ABC, M khác G và MG không song song với cạnh nào của tam giác ABC. Đường thẳng qua M song song DG cắt các mặt phẳng (DBC), (DCA), (DAB) lần lượt ở A’, B’, C’. Chứng minh rằng: DA’ + DB’ + DC’ > 3GM.
Đề học sinh giỏi Toán 11 năm 2022 - 2023 cụm Tân Yên - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa cấp cơ sở môn Toán 11 năm học 2022 – 2023 cụm Tân Yên, tỉnh Bắc Giang; đề thi mã đề 107, hình thức 70% trắc nghiệm (40 câu – 14 điểm) kết hợp 30% tự luận (03 câu – 06 điểm), thời gian làm bài: 120 phút (không kể thời gian giao đề). Trích dẫn Đề học sinh giỏi Toán 11 năm 2022 – 2023 cụm Tân Yên – Bắc Giang : + Trong mặt phẳng Oxy, cho A 2 2 B 4 4. Gọi C và C lần lượt là đường tròn đường kính OA và đường tròn đường kính OB, d là đường thẳng đi qua O cắt đường tròn C ở M, cắt đường tròn C ở N sao cho ON OM M N 3. Phương trình đường thẳng d ax by c 0. Tỉ số a b là? + Cho đường tròn tâm O, bán kính R và điểm A cố định nằm trên đường tròn đó. Một dây cung MN thay đổi của đường tròn O R sao cho 2 R MN. Trọng tâm của tam giác AMN nằm trên một đường (H) cố định. Mệnh đề nào dưới đây đúng? A. (H) là đường tròn có bán kính bằng 3 4 R. B. (H) là một đường thẳng. C. (H) là đường tròn có bán kính bằng 5 6 R. D. (H) là đường tròn có bán kính bằng 15 6 R. + Ba số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, cũng có thể coi là số hạng thứ 2, thứ 9, thứ 44 của một cấp số cộng. Hỏi phải lấy bao nhiêu số hạng đầu tiên của cấp số cộng này để tổng của chúng bằng 820?
Đề học sinh giỏi Toán 11 năm 2022 - 2023 cụm THPT huyện Ý Yên - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 năm học 2022 – 2023 cụm trường THPT huyện Ý Yên, tỉnh Nam Định; đề thi gồm hai phần: bài trắc nghiệm với 40 câu, thời gian làm bài 60 phút; bài tự luận với 05 câu, thời gian làm bài: 75 phút; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 11 năm 2022 – 2023 cụm THPT huyện Ý Yên – Nam Định : + Cho hình chóp S A BCD có đáy A BCD là hình chữ nhật với AB a BC a 3 và SA SB SC SD a 2. Gọi K là hình chiếu vuông góc của B trên AC và H là hình chiếu vuông góc của K trên SA. a) Tính sin của góc giữa SB và mặt phẳng (SAC) b) Tính độ dài đoạn HK theo a. c) Gọi I là giao điểm của hai đường thẳng HK SO. Mặt phẳng (a) di động, luôn đi qua I và cắt các đoạn thẳng SA SB SC SD lần lượt tại A’, B’, C’, D’. Tìm giá trị nhỏ nhất của P SA SB SC SD. + Một hộp chứa 4 viên bi màu đỏ (được đánh số 1, 2, 3, 4); 5 viên bi màu vàng (được đánh số 1, 2, 3, 4, 5) và 6 viên bi màu xanh (được đánh số 1, 2, 3, 4, 5, 6) (mỗi viên bi ghi một số). Lấy ngẫu nhiên bốn viên bi trong hộp. Tính xác suất lấy được bốn viên bi có đủ ba màu nhưng các số trên các viên bi lấy ra đều khác nhau. + Trong một cấp số nhân gồm các số hạng dương, hiệu số giữa số hạng thứ 5 và thứ 4 là 576 và hiệu số giữa số hạng thứ 2 và số hạng đầu là 9. Tổng 5 số hạng đầu tiên của cấp số nhân này bằng?