Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đường tròn ôn thi vào lớp 10

Tài liệu gồm 26 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề đường tròn, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. SỰ XÁC ĐỊNH CỦA ĐƯỜNG TRÒN Định nghĩa: Đường tròn tâm O bán kính R 0 là hình gồm các điểm cách điểm O một khoảng R kí hiệu là (O;R) hay (O). + Đường tròn đi qua các điểm A A … A 1 2 n gọi là đường tròn ngoại tiếp đa giác A A … A 1 2 n. + Đường tròn tiếp xúc với tất cả các cạnh của đa giác A A … A 1 2 n gọi là đường tròn nội tiếp đa giác đó. Những tính chất đặc biệt cần nhớ: + Trong tam giác vuông trung điểm cạnh huyền là tâm vòng tròn ngoại tiếp. + Trong tam giác đều tâm vòng tròn ngoại tiếp là trọng tâm tam giác đó. + Trong tam giác thường: Tâm vòng tròn ngoại tiếp là giao điểm của 3 đường trung trực của 3 cạnh tam giác đó. Tâm vòng tròn nội tiếp là giao điểm 3 đường phân giác trong của tam giác đó. PHƯƠNG PHÁP: Để chứng minh các điểm A A … A 1 2 n cùng thuộc một đường tròn ta chứng minh các điểm A A … A 1 2 n cách đều điểm O cho trước. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN 1. Khi một đường thẳng có hai điểm chung A B với đường tròn (O) ta nói đường thẳng cắt đường tròn tại hai điểm phân biệt. Khi đó ta có những kết quả quan trọng sau: Nếu M nằm ngoài đoạn AB thì MA MB MO R 2 2; Nếu M nằm trong đoạn AB thì MA MB R MO 2 2. Mối liên hệ khoảng cách và dây cung: 2 2 2 AB R OH 4. 2. Khi một đường thẳng chỉ có một điểm chung H với đường tròn (O) ta nói đường thẳng tiếp xúc với đường tròn, hay là tiếp tuyến của đường tròn (O). Điểm H gọi là tiếp điểm của tiếp tuyến với đường tròn (O). Như vậy nếu là tiếp tuyến của (O) thì vuông góc với bán kính đi qua tiếp điểm. Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì: + Điểm đó cách đều hai tiếp điểm. + Tia kẻ từ điểm đó đến tâm O là tia phân giác góc tạo bởi 2 tiếp tuyến. + Tia kẻ từ tâm đi qua điểm đó là tia phân giác góc tạo bởi hai bán kính đi qua các tiếp điểm. + Tia kẻ từ tâm đi qua điểm đó thì vuông góc với đoạn thẳng nối hai tiếp điểm tại trung điểm của đoạn thẳng đó. 3. Khi một đường thẳng và đường tròn (O) không có điểm chung ta nói đường thẳng và đường tròn (O) không giao nhau. Khi đó OH R. 4. Đường tròn tiếp xúc với 3 cạnh tam giác là đường tròn nội tiếp tam giác. Đường tròn nội tiếp có tâm là giao điểm 3 đường phân giác trong của tam giác. 5. Đường tròn tiếp xúc với một cạnh của tam giác và phần kéo dài hai cạnh kia gọi là đường tròn bàng tiếp tam giác. Tâm đường tròn bàng tiếp tam giác trong góc A là giao điểm của hai đường phân giác ngoài góc B và góc C. Mỗi tam giác có 3 đường tròn bàng tiếp. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN Xét hai đường tròn (O;R) và (O’;R’): A. Hai đường tròn tiếp xúc nhau: Khi hai đường tròn tiếp xúc nhau thì có thể xảy ra 2 khả năng: Hai đường tròn tiếp xúc ngoài; Hai đường tròn tiếp xúc trong. B. Hai đường tròn cắt nhau: Khi hai đường tròn 1 2 O O cắt nhau theo dây AB thì O O AB 1 2 tại trung điểm H của AB. Hay AB là đường trung trực của O O1 2. Khi giải toán liên quan dây cung của đường tròn, hoặc cát tuyến ta cần chú ý kẻ thêm đường phụ là đường vuông góc từ tâm đến các dây cung.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh lớp 10 chuyên Toán
Tài liệu gồm 67 trang, được biên soạn bởi tác giả Nguyễn Nhất Huy (Tạp Chí Và Tư Liệu Toán Học), tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh lớp 10 chuyên Toán, có lời giải chi tiết. Mục lục tài liệu tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh lớp 10 chuyên Toán: 1 Các kiến thức cơ bản về bất đẳng thức. 1.1 Một số kí hiệu sử dụng trong tài liệu (Trang 2). 1.2 Bất đẳng thức AM – GM (Trang 2). 1.3 Bất đẳng thức Cauchy – Schwarz (Trang 2). 1.4 Điều kiện có nghiệm của phương trình (Trang 2). 2 Các bài toán bất đẳng thức trong các kì thi tuyển sinh vào lớp 10 chuyên Toán. 3 Giới thiệu một số phương pháp chứng minh bất đẳng thức khác. 3.1 Tam thức bậc hai và phương pháp miền giá trị (Trang 38). 3.2 Phương pháp đổi biến PQR và bất đẳng thức Schur (Trang 45). 3.3 Phân tích tổng bình phương SOS và phân tích Schus – SOS (Trang 51). 4 Các bài toán luyện tập.
Toàn cảnh đề Toán tuyển sinh lớp 10 trường chuyên năm học 2019 - 2020
THCS. giới thiệu đến thầy, cô giáo và các em học sinh tài liệu toàn cảnh đề Toán tuyển sinh lớp 10 trường chuyên năm học 2019 – 2020 do thầy Vũ Ngọc Thành tổng hợp, tài liệu gồm 312 trang phân loại các câu hỏi và bài tập trong các đề Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2019 – 2020 thành các chuyên đề, có lời giải chi tiết. Các chuyên đề trong tài liệu toàn cảnh đề Toán tuyển sinh lớp 10 trường chuyên năm học 2019 – 2020 gồm: + Chuyên đề 1: Căn bậc hai và bài toán liên quan (Trang 2). + Chuyên đề 2: Bất đẳng thức – giá trị lớn nhất & giá trị nhỏ nhất (Trang 29). + Chuyên đề 3: Phương trình (Trang 62). + Chuyên đề 4: Hệ phương trình (Trang 104). + Chuyên đề 5: Hàm số (Trang 131). + Chuyên đề 6: Giải bài toán bằng cách lập phương trình – hệ phương trình – bài toán thực tế (Trang 150). + Chuyên đề 7: Hình học (Trang 158). + Chuyên đề 8: Số học (Trang 262). + Chuyên đề 9: Biểu thức (Trang 304).
Các bài toán thực tế trong đề tuyển sinh vào 10 THPT
Tài liệu gồm 102 trang hướng dẫn phương pháp giải các bài toán thực tế trong đề tuyển sinh vào 10 THPT, đây là một dạng toán mới được đưa vào đề thi tuyển sinh vào lớp 10 môn Toán trong những năm gần đây, nhằm giúp học sinh khối THCS thấy được ứng dụng của toán học trong đời sống thực tiễn, tài liệu được biên soạn bởi tác giả Toán Họa. Khái quát nội dung tài liệu các bài toán thực tế trong đề tuyển sinh vào 10 THPT : CÁC DẠNG TOÁN Dạng toán 1 : Lãi suất ngân hàng. + Lãi đơn: Số tiền lãi chỉ tính trên số tiền gốc mà không tinh trên số tiền lãi do số tiền gốc sinh ra. + Lãi kép: Là số tiền lãi không chỉ tính trên số tiền gốc mà còn tính trên số tiền lãi do tiền gốc sinh ra thay đổi theo từng định kì. Dạng toán 2 : Giải hệ phương trình – giải phương trình. + Dạng toán giải toán bằng cách lập phương trình, hệ phương trình bậc nhất hai ẩn thường xuyên gặp trong những đề thi tuyển sinh lớp 10. Đây là dạng toán khó trong chương trình Trung học cơ sở. Học sinh thường xuyên quên và chưa biết áp dụng các kiến thức liên quan để giải toán. + Khi lập được hệ phương trình ta áp dụng các phương pháp đã học để giải tìm nghiệm của bài toán. + Phương pháp giải tổng quát của loại toán này là: ta lần lượt đặt từng thành phần là x, y và dựa vào các giả thiết của bài toán để lập hai phương trình thể hiện mối liên quan của các ẩn và từ đó giải để được x, y. Đối chiếu điều kiện của ẩn. + Hiển nhiên, nếu sau này kết hợp với kiến thức phương trình bậc hai, ta có những hệ phương trình cao hơn nhưng chung quy lại vẫn dùng những kiến thức cơ sở này. + Loại toán giải bằng cách lập hệ phương trình bậc nhất hai ẩn số có bốn dạng chính: dạng toán về số, dạng toán chuyển động, dạng toán năng suất, dạng toán ứng dụng hình học. [ads] Dạng toán 3 : Vận dụng trong hình học. + Vận dụng định lý Pytago. + Vận dụng kiến thức về hệ thức giữa cạnh và đường cao trong tam giác vuông. + Vận dụng hệ thức liên hệ giữa cạnh và góc trong tam giác vuông. Dạng toán 4 : Vận dụng các công thức hóa – lý. + Vận dụng các công thức Vật lý: I = U/R (I là cường độ dòng điện, U là hiệu điện thế, R là điện trở). + Vận dụng công thức Hóa học: nồng độ phần trăm, nồng độ mol, khối lượng riêng của dung dịch, đổi đơn vị. MỘT SỐ BÀI TẬP PHÂN DẠNG TỰ LUYỆN Dạng toán 1 : Bài toán kinh tế, tăng trưởng, tăng dân số, lãi suất, tiền điện, tiền taxi. Dạng toán 2 : Giải bài toán bằng cách lập phương trình dạng bậc nhất hoặc lập hệ phương trình. Dạng toán 3 : Giải bài toán bằng cách lập hệ phương trình, lập phương trình.
Phương pháp giải đề tuyển sinh vào lớp 10 môn Toán
Nhằm giúp cho các ẹm học sinh chuẩn bị thi vào lớp 10 các trường công lập, trường chuyên, chúng tôi biên soạn cuốn sách Phương pháp giải đề tuyển sinh 9. Cuốn sách tổng hợp từ các đề thi của các trường trong cả nước, được biên soạn rất tâm huyết từ nhóm giáo viên: Nguyễn Ngọc Dũng, Đặng Thị Bích Tuyền, Nguyễn Xuân Tùng, Nguyễn Thành Điệp, Võ Tấn Đạt, Nguyễn Ngọc Nguyên, Ngô Trâm Anh, Lê Minh Thuần, Trần Nguyễn Vân Nhi, Nguyễn Trung Kiên, Lê Đức Việt, Phạm Tiến Đạt … Với cuốn sách này hi vọng các em sẽ có thể gặp nhiều dạng toán ôn thi và mức độ ra đề của từng trường để từ đó các em đề ra phương pháp ôn thi tốt nhất cho mình. Các đề trong tài liệu gồm : + Đề 1. Đề thi tuyển sinh lớp 10 sở GD & ĐT Bắc Giang 2016 – 2017 + Đề 2. Đề thi tuyển sinh lớp 10 sở GD & ĐT Bình Dương 2017 – 2018 + Đề 3. Đề thi tuyển sinh lớp 10 Chuyên Sở GD và ĐT Bình Định 2017 – 2018 (đề thường) + Đề 4. Đề thi tuyển sinh lớp 10 sở GD và ĐT Bắc Giang 2017 – 2018 + Đề 5. Đề thi tuyển sinh vào lớp 10 tỉnh Bắc Ninh 2017 [ads] + Đề 6. Đề thi tuyển sinh lớp 10 Sở GD & ĐT Quảng Ngãi 2017 – 2018 + Đề 7. Đề thi tuyển sinh Lớp 10 Sở GD và ĐT Cà Mau + Đề 8. Đề thi tuyển sinh lớp 10, Sở Giáo dục và Đào tạo tỉnh Đồng Nai + Đề 9. Đề thi tuyển sinh vào lớp 10 THPT tỉnh Hưng Yên + Đề 10. Đề thi tuyển sinh lớp 10 tỉnh Hải Dương năm học 2017 – 2018 + Đề 11. Đề thi tuyển sinh Sở GD & ĐT Hà Tĩnh 2017 – 2018 + Đề 12. Đề thi tuyển sinh Sở GD và ĐT Thừa Thiên Huế 2017 + Đề 13. Đề thi tuyển sinh lớp 10 Sở GD & ĐT Kiên Giang 2017 – 2018 + Đề 14. Đề thi tuyển sinh vào lớp 10 Tỉnh Khánh Hòa + Đề 15. Đề thi tuyển sinh lớp 10 sở GD và ĐT Nghệ An 2017 – 2018