Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 9 đợt 2 năm 2018 - 2019 phòng GDĐT Kim Thành - Hải Dương

Đề KSCL Toán 9 đợt 2 năm 2018 – 2019 phòng GD&ĐT Kim Thành – Hải Dương là đề kiểm tra chất lượng môn Toán lớp 9 giai đoạn giữa học kỳ 2 năm học 2018 – 2019, đề nhằm giúp giáo viên bộ môn Toán nắm rõ chất lượng học tập môn Toán của học sinh lớp 9 tại trường, để có những điều chỉnh phù hợp trong quá trình dạy và học nhằm nâng cao chất lượng cho giai đoạn nữa sau học kỳ 2 của năm học 2018 – 2019. Đề KSCL Toán 9 đợt 2 năm 2018 – 2019 phòng GD&ĐT Kim Thành – Hải Dương gồm 01 trang với 05 bài toán tự luận, học sinh có 120 phút để làm bài thi, đề thi không quá khó và các em hoàn toàn có thể đạt điểm số 9 – 9 nếu nắm vững các kiến thức Toán 9 trong sách giáo khoa. [ads] Trích dẫn đề KSCL Toán 9 đợt 2 năm 2018 – 2019 phòng GD&ĐT Kim Thành – Hải Dương : + Cho hàm số y = (2m + 3)x/3 – m^2 + 3. Tìm m để đồ thị hàm số cắt đồ thị hàm số y = 3x – 6 tại một điểm trên trục tung. + Giải bài toán bằng cách lập hệ phương trình hoặc phương trình: Một mảnh vườn hình chữ nhật có chu vi là 64m. Nếu tăng chiều rộng thêm 2m còn giảm chiều dài đi 3m thì diện tích mảnh vườn giảm 7m2. Tính diện tích của mảnh vườn hình chữ nhật lúc đầu. + Cho hai đường tròn tâm (O1) và đường tròn tâm (O2) tiếp xúc ngoài tại A. Tiếp tuyến chung ngoài BC của hai đường tròn (B thuộc (O1); C thuộc (O2)) cắt tiếp tuyến chung tại A ở I. a. Tính góc O1IO2. b. Chứng minh BC^2 = 4.O1A.O2C và tam giác ABC vuông tại A. c. Kéo dài BA cắt (O2) tại giao điểm thứ hai là D, kéo dài CA cắt (O1) tại giao điểm thứ hai là E. Chứng minh S_ABC = S_ADE.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 9 năm 2020 - 2021 trường THCS Tam Khương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra Toán 9 năm học 2020 – 2021 trường THCS Tam Khương – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Bảy ngày 05 tháng 06 năm 2021. Trích dẫn đề kiểm tra Toán 9 năm 2020 – 2021 trường THCS Tam Khương – Hà Nội : + Một hộp sữa hình trụ có đường kính đáy là 12 cm, chiều cao là 10 cm. Người ta dùng giấy làm tem mác dán xung quanh vỏ hộp sữa. Tính diện tích giấy làm tem mác cần dùng để làm 1 lốc sữa (6 hộp) như vậy (không tính phần mép nối, lấy pi = 3,14). + Cho hàm số y m x m 4 4 (m là tham số). a) Tìm m để hàm số đã cho là hàm số bậc nhất đồng biến trên R. b) Chứng minh rằng với mọi giá trị của m thì đồ thị hàm số đã cho luôn cắt parabol 2 P y x tại hai điểm phân biệt. Gọi 1 2 x x là hoành độ các giao điểm, tìm m sao cho x x x x 1 1 2 2 1 1 18. + Cho đường tròn tâm O đường kính AB. Kẻ dây cung CD vuông góc với AB tại H (H nằm giữa A và O, H khác A và O). Lấy điểm G thuộc CH (G khác C và H), tia AG cắt đường tròn tại E khác A. a) Chứng minh tứ giác BEGH là tứ giác nội tiếp. b) Gọi K là giao điểm của hai đường thẳng BE và CD. Chứng minh: KC.KD = KE.KB. c) Đoạn thẳng AK cắt đường tròn tại F khác A. Chứng minh G là tâm đường tròn nội tiếp HEF.
Đề khảo sát Toán 9 năm 2020 - 2021 trường THCS Phan Chu Trinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021 trường THCS Phan Chu Trinh, quận Ba Đình, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Sáu ngày 04 tháng 06 năm 2021. Trích dẫn đề khảo sát Toán 9 năm 2020 – 2021 trường THCS Phan Chu Trinh – Hà Nội : + Một hộp sữa hình trụ có thể tích bằng 3 83 cm. Hãy so sánh thể tích hộp sữa hình trụ này với thể tích hình cầu có đường kính 8cm. + Cho 2 P y x và đường thẳng d y m x m 2 2 (m là tham số). a) Tìm m để đường thẳng (d) cắt (P) tại hai điểm phân biệt A và B. b) Gọi hoành độ của A và B lần lượt là 1 2 x x. Tìm m để 2 1 2 x m x 2 12. + Cho đường tròn (O;R) và dây cung BC R 3 cố định. Một điểm A chuyển động trên cung lớn BC sao cho tam giác ABC có ba góc nhọn, AM là đường kính của (O). Kẻ các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh các tứ giác BCEF, AEHF nội tiếp. b) Chứng minh tứ giác BHCM là hình bình hành và tính độ dài của đoạn AH theo R. c) Kẻ DP vuông góc với BE tại P, đường thẳng qua P và vuông góc với đường kính AM cắt CF tại Q. Chứng minh rằng tứ giác DPHQ nội tiếp và PQ < HD.
Đề khảo sát môn Toán 9 năm 2020 - 2021 trường THCS Ngọc Thụy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021 trường THCS Ngọc Thụy, quận Long Biên, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Sáu ngày 04 tháng 06 năm 2021. Trích dẫn đề khảo sát môn Toán 9 năm 2020 – 2021 trường THCS Ngọc Thụy – Hà Nội : + Một chiếc thùng bằng tôn dạng hình trụ. Có bán kính đáy là 10cm, chiều cao là 32cm. a) Tính diện tích tôn để làm chiếc thùng (không kể diện tích các chỗ ghép và thùng không có nắp). b) Hỏi nếu đổ 10 lít nước vào thùng thì nước có bị tràn ra ngoài hay không? + Trong mặt phẳng tọa độ Oxy cho Parabol (P): 2 y x và đường thẳng d y x 2. Xác định tọa độ giao điểm của (d) và (P). + Cho đường tròn (O) và điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC với đường tròn (O) (B và C là các tiếp điểm). 1. Chứng minh tứ giác ABOC nội tiếp đường tròn. 2. Đường thẳng CO cắt đường tròn (O) tại điểm thứ hai là D; đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là E; đường thẳng BE cắt AO tại F; H là giao điểm của AO và BC. Chứng minh: AE.AD = AH.AO. 3. Chứng minh: 2 2 2 1.
Đề khảo sát chất lượng Toán 9 năm 2020 - 2021 trường THCS Trưng Vương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Trưng Vương, quận Hoàn Kiếm, thành phố Hà Nội; đề được biên soạn theo hình thức đề thi tự luận 100% với 05 bài toán, thời gian làm bài 120 phút.