Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Phúc Yên Vĩnh Phúc

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Phúc Yên Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 tại Phúc Yên - Vĩnh Phúc Đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 tại Phúc Yên - Vĩnh Phúc Chúng tôi xin giới thiệu đến các thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2023 - 2024 tại phòng Giáo dục và Đào tạo thành phố Phúc Yên, tỉnh Vĩnh Phúc. Đề thi bao gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 phòng GD&ĐT Phúc Yên - Vĩnh Phúc: - Trong ngày Tết Trung thu, một rạp chiếu phim đã phục vụ khán giả một bộ phim hoạt hình với giá vé như sau: Loại I (dành cho trẻ từ 6 đến 13 tuổi): 50.000 đồng một vé và Loại II (dành cho người trên 13 tuổi): 100.000 đồng một vé. Để tránh lỗ, rạp chiếu phim cần thu được ít nhất 20 triệu đồng. Sau khi bán vé, nhân viên đã báo cáo lãnh đạo rằng đã bán được tổng cộng 500 vé. Lãnh đạo rạp chiếu phim khẳng định rằng họ không phải bù lỗ. Hãy giải thích tại sao họ đưa ra khẳng định này và tính số tiền lãi tối thiểu mà rạp đã thu được. - Xét ba điểm A, O, B thẳng hàng (O nằm giữa A và B). Vẽ hai tia Ax, By cùng vuông góc và cùng phía với AB. Dựng góc vuông uOv, tia Ou cắt Ax tại C, tia Ov cắt By tại D. Biết OA = a, OB = b, OC = 2a. Hãy tính diện tích hình thang ABDC theo a, b. - Trong tam giác đều ABC, E là điểm trên cạnh AC (không trùng với A), K là trung điểm của AE. Đường thẳng IF vuông góc với AB tại F và cắt đường thẳng CD vuông góc với BC tại D. a) Chứng minh BCKF là hình thang cân. b) Tìm vị trí của E sao cho đoạn KD ngắn nhất.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Sơn La; kỳ thi được diễn ra vào ngày 26 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Sơn La : + Cho đường tròn (O) và đường thẳng d cố định ((O) và d không có điểm chung). Điểm P di động trên đường thẳng d, từ P vẽ hai tiếp tuyến PA, PB (A, B thuộc đường tròn (O)), PO giao AB tại I. Gọi H là chân đường vuông góc hạ từ điểm A đến đường kính BC, E là giao điểm của hai đường thẳng CP và AH. Gọi F là giao điểm thứ hai của đường thẳng CP và đường tròn (O). Chứng minh rằng: a) PF.PC = PI.PO. b) E là trung điểm của đoạn thẳng AH. c) Điểm I luôn thuộc một đường cố định khi P di động trên d. + Tìm nghiệm nguyên của phương trình: 2x2y + 3xy + y = x2 + 2xy2 + 3x + 1. + Cho ba số thực x, y, z thỏa mãn các điều kiện: x > 0, 5×2 = yz, x + y + z = xyz. Chứng minh rằng?
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 - 2022 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Nghệ An; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 – 2022 sở GD&ĐT Nghệ An : + Cho các số thực không âm a b c thỏa mãn a + b + c =< 3. Tìm giá trị nhỏ nhất của biểu thức P. + Cho đường tròn (O) và dây cung BC cố định (BC khác đường kính). Điểm A thuộc cung lớn BC sao cho tam giác ABC nhọn và AB < AC. Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, AB lần lượt tại D, E. Đường thẳng AD cắt đường tròn (I) tại điểm thứ hai là M; BM cắt đường tròn (I) tại điểm thứ hai là Q; BI cắt DE tại P. a) Chứng minh tứ giác IPQM nội tiếp. b) Chứng minh BME = DMP. c) Đường tròn đi qua C tiếp xúc với Al tại I cắt BC tại H và cắt (O) tại điểm thứ hai là K. Chứng minh khi A di động trên (O) thì đường thắng HK luôn đi qua một điểm cố định. + Trong một hoạt động ngoại khóa có 20 giáo viên và 80 học sinh đến từ nhiều nơi tham gia. Biết rằng mỗi giáo viên quen với ít nhất 65 người và mỗi học sinh quen với tối đa 12 người (quan hệ quen được xem là có tính 2 chiều: Người A quen người B thì người B cũng quen người A). Ban tổ chức xếp họ thành 41 nhóm. Hỏi ban tổ chức có thể xếp sao cho nhóm nào cũng có 2 người quen nhau không? Vì sao?
Đề thi học sinh giỏi Toán 9 năm học 2021 - 2022 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp thành phố môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 24 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm học 2021 – 2022 sở GD&ĐT Hà Nội : + Cho tam giác ABC nhọn (AB < AC), nội tiếp đường tròn (O). Các đường cao AD, BE, CF của tam giác ABC đồng quy tại trực tâm H. Gọi K, Q lần lượt là giao điểm của đường thẳng EF với hai đường thẳng AH, AO. 1) Chứng minh AQE = 90°. 2) Gọi I là trung điểm của AH. Chứng minh IE2 = IK.ID. 3) Gọi R, J lần lượt là trung điểm của BE, CF. Chứng minh JR vuông góc với QD. + Tìm tất cả các số nguyên dương a, b sao cho số (a3 + b)(b3 + a) là lập phương của một số nguyên tố. + Trên bảng ta viết số tự nhiên 222…2 gồm 2022 chữ số 2. Mỗi bước ta chọn 22 chữ số liên tiếp nào đó có chữ số ngoài cùng bên trái bằng 2, rồi biến đổi các chữ số được chọn theo qui tắc: chữ số 2 đổi thành chữ số 0 còn chữ số 0 đổi thành chữ số 2. a) Chứng minh mọi cách thực hiện đều phải dừng lại sau một số hữu hạn bước. b) Giả sử sau khi thực hiện được n bước thì không thể thực hiện được thêm bước nào nữa. Chứng minh n là số lẻ.
Đề thi chọn học sinh giỏi Toán 9 năm 2021 - 2022 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa môn Toán 9 THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Trị; kỳ thi được diễn ra vào ngày 16 tháng 03 năm 2022. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 sở GD&ĐT Quảng Trị : + Tìm tất cả các giá trị của tham số m để đường thẳng y = (m2 + 10)x – 25 cắt đồ thị hàm số y = x2 tại hai điểm phân biệt mà hoành độ của chúng đều là các số nguyên. + Cho hai đường tròn (O) và (O’) cắt nhau tại A, B. Tiếp tuyến chung gần B hơn A tiếp xúc với (O) và (O’) lần lượt tại M và N. Gọi P là giao điểm của AB và MN. a) Chứng minh rằng PM2 = PB.PA, từ đó suy ra P là trung điểm của đoạn thẳng MN. b) Gọi D là hình chiếu của N lên đường thẳng MB. Chứng minh rằng AB là phân giác của MAD. c) Gọi C là giao điểm của OO’ và DN. Chứng minh rằng CBN = 90°. + Tại điểm tiêm chủng số 1 của Trung tâm y tế thành phố Đông Hà, người ta bố trí một phòng chờ cho những người đến tiêm. Để đảm bảo an toàn về phòng chống dịch Covid-19, yêu cầu khoảng cách tối thiểu giữa hai người bất kỳ trong phòng là 2m. Hỏi tại một thời điểm, phòng chờ đó chứa được tối đa bao nhiêu người? Biết rằng nền của phòng chờ là một hình vuông có diện tích 16m².