Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập hàm số lượng giác và phương trình lượng giác - Võ Công Trường

Tài liệu gồm 40 trang, được biên soạn bởi thầy giáo Võ Công Trường, tuyển chọn các bài tập  trắc nghiệm và tự luận chuyên đề hàm số lượng giác và phương trình lượng giác (Toán 11 phần Đại số và Giải tích chương 1). PHẦN 1 . BÀI TẬP TRẮC NGHIỆM. BÀI 1 . HÀM SỐ LƯỢNG GIÁC. DẠNG 1. TẬP XÁC ĐỊNH CỦA HÀM SỐ LƯỢNG GIÁC. DẠNG 2. XÉT TÍNH CHẴN, LẺ CỦA HÀM SỐ LƯỢNG GIÁC. DẠNG 3. TÍNH TUẦN HOÀN CỦA HÀM SỐ LƯỢNG GIÁC. DẠNG 4. XÉT TÍNH ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ LƯỢNG GIÁC. DẠNG 5. TÌM GIÁ TRỊ LỚN NHẤT GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ LƯỢNG GIÁC. DẠNG 6. CÂU HỎI HỖN HỢP. BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. DẠNG 1: PTLG CƠ BẢN (KHÔNG CẦN BIẾN ĐỔI). DẠNG 2: PTLG CƠ BẢN (BIẾN ĐỔI, KHÔNG ĐIỀU KIỆN). DẠNG 3: PTLG CƠ BẢN CÓ ĐIỀU KIỆN. DẠNG 4: PTLG CƠ BẢN TRÊN KHOẢNG ĐOẠN. DẠNG 5: PTLG CƠ BẢN CÓ THAM SỐ. DẠNG 6: BIỂU DIỄN NGHIỆM TRÊN ĐTLG. PHẦN 2 . BÀI TẬP TỰ LUẬN. DẠNG 1: TÌM TẬP XÁC ĐỊNH. DẠNG 2: TÌM GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT. DẠNG 3: PHƯƠNG TRÌNH BẬC 2 ĐỐI VỚI 1 HÀM SỐ LƯỢNG GIÁC. DẠNG 4: PHƯƠNG TRÌNH BẬC NHẤT ĐỐI VỚI SINU, COSU. DẠNG 5: PHƯƠNG TRÌNH THUẦN NHẤT BẬC HAI ĐỐI VỚI SINU, COSU. DẠNG 6: PHƯƠNG TRÌNH BIẾN ĐỔI. Xem thêm : Hệ thống kiến thức và phương pháp giải Toán 11 – Võ Công Trường

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập VDC hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Tài liệu gồm 141 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) hàm số lũy thừa, hàm số mũ và hàm số lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC hàm số lũy thừa, hàm số mũ và hàm số lôgarit: CHỦ ĐỀ 1 . LŨY THỪA. Dạng 1. Các phép toán biến đổi lũy thừa. Dạng 2. So sánh, đẳng thức và bất đẳng thức đơn giản. CHỦ ĐỀ 2 . HÀM SỐ LŨY THỪA. Dạng 1. Tìm tập xác định của hàm số lũy thừa. Dạng 2. Đồ thị hàm số lũy thừa. CHỦ ĐỀ 3 . LÔGARIT. Dạng 1. Tính giá trị của biểu thức không có điều kiện. Rút gọn biểu thức. Dạng 2. Đẳng thức chứa logarit. Dạng 3. Biểu thị biểu thức theo một biểu thức đã cho và từ đó tìm giá trị lớn nhất và giá trị nhỏ nhất (GTLN – GTNN). CHỦ ĐỀ 4 . HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT. Dạng 1. Tìm tập xác định của hàm số chứa mũ – lôgarit. Dạng 2. Đồ thị hàm số mũ – lôgarit. Dạng 3. Xét tính đơn điệu, cực trị, GTLN và GTNN của hàm số mũ – logarit. Dạng 4. Tìm GTLN và GTNN của hàm số mũ – logarit nhiều biến. Dạng 5. Bài toán lãi suất. CHỦ ĐỀ 5 . PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LÔGARIT. Dạng 1. Phương pháp đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Phương pháp logarit hóa, mũ hóa. Dạng 4. Phương pháp biến đổi thành tích. Dạng 5. Phương pháp sử dụng tính đơn điệu. CHỦ ĐỀ 6 . BẤT PHƯƠNG TRÌNH MŨ VÀ BẤT PHƯƠNG TRÌNH LÔGARIT. Dạng 1. Phương pháp biến đổi tương đương đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Phương pháp logarit hóa. Dạng 4. Phương pháp sử dụng tính đơn điệu.
Các dạng bài tập VDC bất phương trình mũ và bất phương trình lôgarit
Tài liệu gồm 17 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) bất phương trình mũ và bất phương trình lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC bất phương trình mũ và bất phương trình lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Phương pháp biến đổi tương đương đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Phương pháp logarit hóa. Dạng 4. Phương pháp sử dụng tính đơn điệu. Xem thêm : Các dạng bài tập VDC phương trình mũ và phương trình lôgarit
Các dạng bài tập VDC phương trình mũ và phương trình lôgarit
Tài liệu gồm 41 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương trình mũ và phương trình lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC phương trình mũ và phương trình lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM I. PHƯƠNG TRÌNH MŨ. 1. Phương trình mũ cơ bản. 2. Cách giải một số phương trình mũ cơ bản: Đưa về cùng cơ số; Phương pháp đặt ẩn phụ; Logarit hóa. II. PHƯƠNG TRÌNH LOGARIT. 1. Phương trình logarit cơ bản. 2. Cách giải một số phương trình mũ cơ bản: Đưa về cùng cơ số, Phương pháp đặt ẩn phụ; Mũ hóa. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Phương pháp đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Phương pháp logarit hóa, mũ hóa. Dạng 4. Phương pháp biến đổi thành tích. Dạng 5. Phương pháp sử dụng tính đơn điệu.
Các dạng bài tập VDC hàm số mũ và hàm số lôgarit
Tài liệu gồm 37 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) hàm số mũ và hàm số lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC hàm số mũ và hàm số lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Hàm số mũ. 2. Hàm số lôgarit. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Tìm tập xác định của hàm số chứa mũ – lôgarit. Dạng 2. Đồ thị hàm số mũ – lôgarit. Dạng 3. Xét tính đơn điệu, cực trị, GTLN và GTNN của hàm số mũ – logarit. Dạng 4. Tìm GTLN và GTNN của hàm số mũ – logarit nhiều biến. Dạng 5. Bài toán lãi suất. Xem thêm : + Bài tập VD – VDC hàm số luỹ thừa, hàm số mũ và hàm số lôgarit + Trắc nghiệm VD – VDC mũ – logarit – Đặng Việt Đông