Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2021 2022 sở GD ĐT Vĩnh Long

Nội dung Đề tuyển sinh THPT môn Toán năm 2021 2022 sở GD ĐT Vĩnh Long Bản PDF - Nội dung bài viết Chào các thầy cô và các em học sinh! Chào các thầy cô và các em học sinh! Để giúp các bạn chuẩn bị cho kỳ thi tuyển sinh lớp 10 THPT môn Toán năm học 2021 – 2022 sở GD&ĐT Vĩnh Long, Sytu xin phép giới thiệu đến các bạn đề thi mẫu với những câu hỏi thú vị sau đây: Giả sử có hai vòi nước cùng chảy vào một bể không có nước, sau 3 giờ bể sẽ đầy. Nếu mở vòi thứ nhất chảy một mình trong 20 phút rồi khóa lại và mở tiếp vòi thứ hai chảy trong 30 phút, thì sau cùng cả hai vòi chảy đầy bể trong 1/8 thời gian ban đầu. Hãy tính thời gian mỗi vòi chảy một mình đầy bể. Cho tam giác vuông ABC tại A, đường cao AH. Biết AB = 9cm, AC = 12cm. a) Tính độ dài cạnh BC, độ dài đường cao AH và số đo góc ACB (làm tròn đến phút). b) Phân giác của góc BAC cắt BC tại điểm D. Hãy tính độ dài đoạn thẳng BD. Từ một điểm A nằm ngoài đường tròn (O; R) với OA ≤ 2R, vẽ hai tiếp tuyến AD, AE đến đường tròn (D, E là các tiếp điểm). a) Chứng minh tứ giác ADOE nội tiếp. b) Chọn điểm M trên cung nhỏ DE sao cho M khác D, E và MD < ME. Khi đó tia AM cắt (O) tại điểm thứ hai N. Đoạn thẳng AO cắt cung nhỏ DE tại K. Chứng minh đường thẳng NK là tia phân giác của góc DNE. c) Kẻ đường kính KQ của đường tròn (O; R). Tia QN cắt tia ED tại điểm C. Chứng minh rằng MD * CE = ME * CD. Hy vọng rằng đề thi trên sẽ giúp các bạn nắm vững kiến thức và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các bạn ôn tập hiệu quả và đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 đợt 1 năm 2022 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán ôn tập tuyển sinh vào lớp 10 THPT đợt 1 năm 2022 phòng Giáo dục và Đào tạo huyện Kim Thành, tỉnh Hải Dương. Trích dẫn đề thi thử Toán vào lớp 10 đợt 1 năm 2022 phòng GD&ĐT Kim Thành – Hải Dương : + Cho phương trình x2 − 2(m − 1)x − 2m = 0 (m là tham số). Tìm m để phương trình có hai nghiệm phân biệt x1 và x2 sao cho x12 + x2 – x2 = 5 – 2m. + Giải bài toán bằng cách lập hệ phương trình hoặc phương trình: Hai bến sông A và B cách nhau 15 km. Lúc 8 giờ sáng một canô xuôi dòng từ bến A đến bến B. Tại B canô nghỉ 20 phút rồi ngược dòng từ B trở về A. Canô trở về đến bến A lúc 11 giờ cùng ngày. Tính vận tốc của canô khi nước yên lặng, biết vận tốc của dòng nước là 3km/h. + Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA và MB với đường tròn (A và B là tiếp điểm). Lấy điểm C thuộc cung nhỏ AB sao cho cung CA nhỏ hơn cung CB, MC cắt đường tròn tại điểm thứ hai là D. Gọi H là trung điểm của CD. 1) Chứng minh tứ giác MAHO nội tiếp; 2) Gọi K là giao điểm của AB và CD, chứng minh MH.MK = MC.MD; 3) Đường thẳng qua C song song với MB cắt AB tại E, DE cắt MB tại F. Chứng minh F là trung điểm của BM.
Đề thi thử Toán vào lớp 10 lần 3 năm 2022 trường THCS Ái Mộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán ôn tập tuyển sinh vào lớp 10 THPT lần 3 năm 2022 trường THCS Ái Mộ, quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 26 tháng 05 năm 2022. Trích dẫn đề thi thử Toán vào lớp 10 lần 3 năm 2022 trường THCS Ái Mộ – Hà Nội : + Giải các bài toán có yếu tố thực tiễn: Một quả bóng World Cup xem như một hình cầu có đường kính là 17cm. Tính diện tích mặt cầu và thể tích hình cầu (lấy pi = 3,14). + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một sân bóng đá theo chuẩn FIFA là sân hình chữ nhật, chiều dài hơn chiều rộng 37m và có diện tích 7140m2. Tính chiều dài và chiều rộng của sân bóng đá (hình vẽ minh họa). + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (2m + 1)x – 2m + 4 và Parabol (P): y = x² (với x là ẩn và m là tham số). a) Chứng minh rằng đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A và B. b) Gọi H và K lần lượt là các hình chiếu vuông góc của A và B trên trục hoành. Tìm giá trị tham số m để đoạn thẳng HK có độ dài bằng 4?
Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Nghi Lộc - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Nghi Lộc – Nghệ An : + Trong đợt dịch Covid-19 vừa qua để ủng hộ cho đội tình nguyện ra quân vì môi trường xanh-sạch- đẹp, mẹ có nhờ Ngọc ra cửa hàng tạp hóa để mua 4 chai nước sát khuẩn và 3 hộp khẩu trang hết 449 nghìn đồng. Tính giá tiền của mỗi chai nước sát khuẩn và giá tiền mỗi hộp khẩu trang mà Ngọc đã mua. Biết giá tiền của 1 chai nước sát khuẩn hơn giá tiền 1 hộp khẩu trang là 16 nghìn đồng. + Cho điểm M nằm ngoài đường trong (O; R) sao cho OM = 3R. Qua M vẽ hai tiếp tuyến MA, MB với đường tròn (O; R) (A, B là các tiếp điểm) và kẻ cát tuyến MCD của đường tròn (O; R) cắt đoạn thẳng OA (C nằm giữa M và D). Gọi I là trung điểm của dây cung CD và H là giao điểm của AB với OM. a) Chứng minh: Tứ giác AIOB là tứ giác nội tiếp đường tròn, Xác định tâm của đường tròn này. b) Chứng minh: MC.MD MH.MO c) Gọi E, F lần lượt là hình chiếu của C lên MA và MB. Tìm giá trị lớn nhất của tích CE.CF khi cát tuyến MCD quay quanh điểm M. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): 2 y mx m 2 1 và parabol: (P): 2 y x a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt. b) Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ 1 2 x x thỏa mãn : 1 2 12 11 2 1.
Đề thi thử Toán lần 2 vào lớp 10 năm 2022 - 2023 phòng GDĐT Diễn Châu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán lần 2 tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi thử Toán lần 2 vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Diễn Châu – Nghệ An : + Cho phương trình: x2 – mx + m – 1 = 0 (1). Tìm m để phương trình (1) có hai nghiệm phân biệt x1 và x2 thoả mãn: x12 + 3x1x2 = 3×2 + 3m + 16. + Đạp xe là một hình thức tập thể dục đơn giản, rất tốt cho sức khoẻ và thân thiện với môi trường. Sáng sớm, Tuấn đạp xe từ nhà ra bãi biển. Sau đó lại đạp xe từ bãi biển trở về nhà theo cùng một tuyến đường đó với vận tốc lớn hơn vận tốc lúc đi là 2km/h nên thời gian về ít hơn thời gian đi 3 phút. Tính vận tốc xe đạp lúc đi và lúc về của bạn Tuấn, biết quảng đường từ nhà Tuấn đến bãi biển dài 3 km. + Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Vẽ đường kính BD của đường tròn (O). Đoạn AD cắt đường tròn (O) tại E (E khác D). Gọi I là trung điểm của ED, H là giao điểm của AO và BC. a) Chứng minh tứ giác ABOC nội tiếp được đường tròn. b) Chứng minh: IE2 + AH.AO = AI2. c) Gọi K là chân đường vuông góc kẻ từ C đến OD. Đoạn ED cắt CK tại M. Chứng minh M là trung điểm của CK.