Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

8 chủ đề luyện thi tuyển sinh vào lớp 10 môn Toán

Tài liệu gồm 202 trang, tuyển tập 8 chủ đề luyện thi tuyển sinh vào lớp 10 môn Toán, giúp học sinh lớp 9 tham khảo để ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 sắp tới. CHỦ ĐỀ 1 – RÚT GỌN BIỂU THỨC. Dạng 1. Rút gọn biểu thức 1. Dạng 2. Cho giá trị của x tính giá trị của biểu thức 3. Dạng 3. Đưa về giải phương trình 4. Dạng 4. Đưa về giải bất phương trình 10. Dạng 6. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 16. Dạng 7. Tìm x để P nhận giá trị là số nguyên 24. Dạng 8. Tìm tham số để phương trình P = m có nghiệm 28. CHỦ ĐỀ 2 – HỆ PHƯƠNG TRÌNH. I. HỆ KHÔNG CHỨA THAM SỐ 33. Dạng 1. Hệ đa thức bậc nhất đối với x và y 33. Dạng 2. Hệ chứa phân thức 34. Dạng 3. Hệ chứa căn 36. Dạng 4. Hệ thức chứa trị tuyệt đối 38. II. HỆ CHỨA THAM SỐ 40. CHỦ ĐỀ 3 – GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH. I. GIẢI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH 45. Dạng 1. Toán chuyển động 45. Dạng 2. Toán năng suất 47. Dạng 3. Toán làm chung công việc 48. Dạng 4. Toán về cấu tạo số 51. Dạng 5. Toán phần trăm 52. Dạng 6. Toán có nội dung hình học 53. II. GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH BẬC HAI 55. Dạng 1. Toán chuyển động 55. Dạng 2. Toán năng suất 59. Dạng 3. Toán làm chung công việc 62. Dạng 4. Toán có nội dung hình học 63. CHỦ ĐỀ 4 – PHƯƠNG TRÌNH BẬC HAI VÀ ĐỊNH LÝ VI-ÉT. I. ĐỊNH LÍ VI-ÉT 68. Dạng 1 các nghiệm thỏa mãn một biểu thức đối xứng 68. Dạng 2. Kết hợp định lý Vi-ét để giải các nghiệm 70. Dạng 3. Giải các nghiệm dựa vào ∆ là bình phương 72. Dạng 4. Tính x1^2 theo x1 và x2^2 theo x2 dựa vào phương trình ax2 + bx + c = 0. II. HỆ QUẢ CỦA ĐỊNH LÝ VI-ÉT 77. Dạng 1. Dạng toán có thêm điều kiện phụ 77. Dạng 2. So sánh nghiệm với số 0 và số a 80. Dạng 3. Đặt ẩn phụ 81. III. SỰ TƯƠNG GIAO CỦA ĐƯỜNG THẲNG VÀ PARABOL 83. Dạng 1. Tìm tham số để đường thẳng tiếp xúc parabol, tìm tọa độ tiếp điểm 83. Dạng 2. Tìm tham số để đường thẳng cắt parabol tại hai điểm phân biệt A, B thỏa mãn một biểu thức đối xứng đối với xA và xB 84. Dạng 3. Tìm tham số để đường thẳng cắt parabol tại hai điểm phân biệt A, B thỏa mãn một biểu thức không đối xứng đối với xA và xB 87. Dạng 4. Tìm tham số để đường thẳng cắt parapol tại hai điểm phân biệt A, B liên quan đến tung độ A, B 92. Dạng 5. Bài toán liên quan đến độ dài, diện tích 94. CHỦ ĐỀ 5 – PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI. I. PHƯƠNG TRÌNH KHÔNG CHỨA THAM SỐ 102. Dạng 1. Phương trình bậc ba nhẩm được một nghiệm 102. Dạng 2. Phương trình trùng phương 102. Dạng 3. Phương trình dạng 103. Dạng 4. Phương trình dạng 432 ax bx cx bx a 0 103. Dạng 5. Phương trình giải bằng phương pháp đặt ẩn phụ 104. Dạng 6. Phương trình chứa ẩn ở mẫu 104. II. PHƯƠNG TRÌNH CHỨA THAM SỐ 105. Dạng 1. Phương trình bậc ba đua được về dạng tích (x – α)(ax2 + bx + c) = 0 105. Dạng 2. Phương trình trùng phương 106. CHỦ ĐỀ 6 – ĐƯỜNG TRÒN. Dạng 1. Kết nối các góc bằng nhau thông qua tứ giác nội tiếp 110. Dạng 2. Chứng minh ba điểm thẳng hàng 119. Dạng 3. Tiếp tuyến 121. Dạng 4. Chứng minh điểm thuộc đường tròn, chứng minh đường kính 124. Dạng 5. Sử dụng định lý Ta-lét và định lý Ta-lét đảo 128. Dạng 6. Sử dụng tính chất phân giác 135. CHỦ ĐỀ 7 – BẤT ĐẲNG THỨC. I. BẤT ĐẲNG THỨC CÔSI 149. Dạng 1. Dạng tổng sang tích 149. Dạng 2. Dạng tích sang tổng, nhân bằng số thích hợp 150. Dạng 3. Qua một bước biến đổi rồi sử dụng bất đẳng thức Cô-si 151. Dạng 4. Ghép cặp đôi 154. Dạng 5. Dự đoán kết quả rồi tách thích hợp 154. Dạng 6. Kết hợp đặt ẩn phụ và dự đoán kêt quả 156. Dạng 7. Tìm lại điều kiện của ẩn 160. II. BẤT ĐẲNG THỨC BUNHIA 162. III. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 166. Dạng 1. Đưa về bình phương 166. Dạng 2. Tạo ra bậc hai bằng cách nhân hai bậc một 167. Dạng 3. Tạo ra ab + bc + ca 169. Dạng 4. Sử dụng tính chất trong ba số bất kì luôn tòn tại hai số có tích không âm 170. Dạng 5. Sử dụng tính chất của một số bị chặn từ 0 đến 1 172. Dạng 6. Dự đoán kết quả rồi xét hiệu 174. CHỦ ĐỀ 8 – PHƯƠNG TRÌNH VÔ TỶ. I. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 181. Dạng 1. Ghép thích hợp đưa về tích 181. Dạng 2. Nhân liên hợp đưa về tích 182. Dạng 3. Dự đoán nghiệm để từ đó tách thích hợp đưa về tích 185. II. PHƯƠNG PHÁP ĐẶT ẨN PHỤ 191. Dạng 1. Biến đổi về một biểu thức và đặt một ẩn phụ 191. Dạng 2. Biến đổi về hai biểu thức và đặt hai ẩn phụ rồi đưa về tích 193. Dạng 3. Đặt ẩn phụ kết hợp với ẩn ban đầu đưa về tích 195. Dạng 2. Đánh giá vế này ≥ một số, vế kia ≤ số đó bằng BĐT Cô-si, Bunhia 197. III. PHƯƠNG PHÁP ĐÁNH GIÁ 202.

Nguồn: toanmath.com

Đọc Sách

Phương trình nghiệm nguyên chọn lọc
Tài liệu gồm 218 trang, tuyển tập các chủ đề phương trình nghiệm nguyên chọn lọc, giúp học sinh ôn tập để chuẩn bị cho kỳ thi chọn học sinh giỏi Toán bậc THCS các cấp và ôn thi vào lớp 10 môn Toán. MỤC LỤC : Phần 1 MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN 1. 1 PHƯƠNG PHÁP XÉT TÍNH CHIA HẾT 2. A Phương pháp phát hiện tính chia hết của một ẩn 2. B Phương pháp đưa về phương trình ước số 2. C Phương pháp biểu thị một ẩn theo ẩn còn lại rồi dùng tính chia hết 3. D Phương pháp xét số dư của từng vế 4. 2 PHƯƠNG PHÁP DÙNG BẤT ĐẲNG THỨC 8. A Phương pháp sắp thứ tự các ẩn 8. B Phương pháp xét từng khoảng giá trị của ẩn 9. C Phương pháp chỉ ra nghiệm nguyên 10. D Phương pháp sử dụng điều kiện để phương trình bậc hai có nghiệm 10. 3 PHƯƠNG PHÁP DÙNG TÍNH CHẤT CỦA SỐ CHÍNH PHƯƠNG 17. A Sử dụng tính chất về chia hết của số chính phương 17. B Tạo ra bình phương đúng 17. C Tạo ra tổng các số chính phương 18. D Xét các số chính phương liên tiếp 18. E Sử dụng điều kiện biệt số ∆ là số chính phương 19. F Sử dụng tính chất: 20. G Sử dụng tính chất: 21. 4 PHƯƠNG PHÁP LÙI VÔ HẠN, NGUYÊN TẮC CỰC HẠN 28. Phần 2 MỘT SỐ DẠNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN 32. 1 PHƯƠNG TRÌNH MỘT ẨN 32. 2 PHƯƠNG TRÌNH BẬC NHẤT VỚI HAI ẨN 35. A Cách giải phương trình bậc nhất hai ẩn ax + by = c với nghiệm nguyên (a, b, c thuộc Z) 36. 3 PHƯƠNG TRÌNH BẬC HAI VỚI HAI ẨN 39. 4 PHƯƠNG TRÌNH BẬC BA HAI ẨN 57. 5 PHƯƠNG TRÌNH BẬC BỐN VỚI HAI ẨN 66. 6 PHƯƠNG TRÌNH ĐA THỨC VỚI BA ẨN TRỞ LÊN 76. 7 PHƯƠNG TRÌNH PHÂN THỨC 85. 8 PHƯƠNG TRÌNH MŨ 93. 9 PHƯƠNG TRÌNH VÔ TỈ 104. 10 HỆ PHƯƠNG TRÌNH VỚI NGHIỆM NGUYÊN 114. 11 TÌM ĐIỀU KIỆN ĐỂ PHƯƠNG TRÌNH CÓ NGHIỆM NGUYÊN 118. Phần 3 BÀI TOÁN ĐƯA VỀ GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN 125. 1 BÀI TOÁN VỀ SỐ TỰ NHIÊN VÀ CÁC CHỮ SỐ 125. 2 BÀI TOÁN VỀ TÍNH CHIA HẾT VÀ SỐ NGUYÊN TỐ 138. 3 BÀI TOÁN THỰC TẾ 152. Phần 4 PHƯƠNG TRÌNH NGHIỆM NGUYÊN MANG TÊN CÁC NHÀ TOÁN HỌC 159. 1 THUẬT TOÁN EUCLIDE VÀ PHƯƠNG PHÁP TÌM NGHIỆM RIÊNG ĐỂ GIẢI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 159. A Mở đầu 159. B Cách giải tổng quát 160. C Ví dụ 161. D Cách tìm một nghiệm riêng của phương trình ax + by = c 161. 2 PHƯƠNG TRÌNH PELL 166. A Mở đầu 166. B Phương trình Pell 166. 3 PHƯƠNG TRÌNH PYTHAGORE 170. A Mở đầu 170. 4 PHƯƠNG TRÌNH FERMAT 175. A Định lí nhỏ Fermat 175. B Định lí lớn Fermat 175. C Lịch sử về chứng minh định lí lớn Fermat 176. D Chứng minh định lí lớn Fermat với n=4 177. 5 PHƯƠNG TRÌNH DIONPHANTE 180. Phần 5 NHỮNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN CHƯA CÓ LỜI GIẢI 182. 1 CÒN NHIỀU PHƯƠNG TRÌNH NGHIỆM NGUYÊN CHƯA GIẢI ĐƯỢC 182. A Phương trình bậc ba với hai ẩn 182. B Phương trình bậc bốn với hai ẩn 183. C Phương trình bậc cao với hai ẩn 183. D Phương trình với ba ẩn trở lên 184. 2 NHỮNG BƯỚC ĐỘT PHÁ 185. Phần 6 PHƯƠNG TRÌNH NGHIỆM NGUYÊN QUA CÁC KỲ THI 187. 1 Trong các đề thi vào lớp 10 187. 2 Trong các đề thi học sinh giỏi quốc gia và quốc tế 209.
Trọng tâm kiến thức và các dạng đề ôn thi vào lớp 10 môn Toán
Tài liệu gồm 242 trang, được biên soạn bởi các tác giả: Trần Hữu Tháp (Chủ biên), Nguyễn Văn Chi, Huỳnh Thanh Hùng, Hồ Tấn Yên, Định Văn Thân, Đoàn Văn Trúc; trình bày trọng tâm kiến thức và các dạng đề ôn thi vào lớp 10 môn Toán. Nội dung của tài liệu này dựa trên chương trình bộ môn Toán cấp THCS (trọng tâm là lớp 9) hiện hành và hướng dẫn nội dung ôn thi vào lớp 10 của sở Giáo dục và Đào tạo tỉnh Quảng Ngãi. Cấu trúc của tài liệu gồm có bốn phần chính: + Phần một : Đại số. + Phần hai : Hình học. + Phần ba : Số học và toán suy luận lô-gic (dành cho học sinh khá – giỏi). + Phần tư : Một số đề thi vào lớp 10 THPT và THPT chuyên Lê Khiết. Mục lục tài liệu trọng tâm kiến thức và các dạng đề ôn thi vào lớp 10 môn Toán: Lời nói đầu 3. Phần một . ĐẠI SỐ. Chủ đề 1. Biến đổi biểu thức đại số. I. Kiến thức cần sử dụng 5. II. Các dạng toán thường gặp 5. III. Bài tập vận dụng 11. Chủ đề 2. Phương trình và Hệ phương trình. I. Kiến thức cần sử dụng 14. II. Các dạng toán thường gặp 15. III. Bài tập vận dụng 30. Chủ đề 3. Hàm số và đồ thị. I. Kiến thức cần sử dụng 35. II. Các dạng toán thường gặp 35. III. Bài tập vận dụng 41. Chủ đề 4. Bất đẳng thức − Bất phương trình. I. Kiến thức cần sử dụng 43. II. Các dạng toán thường gặp 44. III. Bài tập vận dụng 50. Gợi ý − Hướng dẫn giải phần Đại số 52. Phần hai . HÌNH HỌC. Chủ đề 1. Tính toán các đại lượng hình học. I. Kiến thức cần sử dụng 94. II. Các dạng toán thường gặp 94. III. Bài tập vận dụng 110. Chủ đề 2. Chứng minh các yếu tố hình học, quan hệ hình học. I. Kiến thức cần sử dụng 112. II. Các dạng toán thường gặp 112. III. Bài tập vận dụng 142. Chủ đề 3. Tập hợp điểm. I. Kiến thức cần sử dụng 147. II. Các dạng toán thường gặp 147. III. Bài tập vận dụng 157. Chủ đề 4. Cực trị hình học. I. Kiến thức cần sử dụng 158. II. Các dạng toán thường gặp 158. III. Bài tập vận dụng 170. Gợi ý − Hướng dẫn giải phần Hình học 177. Phần ba . SỐ HỌC. Chủ đề 1 . Tính chia hết – Đồng dư thức. 1. Phương pháp giải 201. 2. Các ví dụ 201. 3. Bài tập tự luyện 205. Chủ đề 2 . Số nguyên tố – Hợp số – Số chính phương. 1. Phương pháp giải 206. 2. Các ví dụ 206. 3. Bài tập tự luyện 208. Chủ đề 3 . Phương trình nghiệm nguyên. 1. Phương pháp giải 209. 2. Các ví dụ 209. 3. Bài tập tự luyện 212. Chủ đề 4 . Toán suy luận lô-gic. 1. Phương pháp giải 212. 2. Các ví dụ 213. 3. Bài tập tự luyện 218. Gợi ý − Hướng dẫn giải phần Số học 220. Phần bốn . Một số đề thi vào lớp 10 THPT và THPT chuyên Lê Khiết 229.
Chuyên đề bất đẳng thức và cực trị hình học ôn thi vào lớp 10
Tài liệu gồm 41 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề bất đẳng thức và cực trị hình học, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. SỬ DỤNG CÁC TÍNH CHẤT HÌNH HỌC ĐƠN GIẢN 1) Bất đẳng thức liên hệ giữa độ dài các cạnh một tam giác: AB AC BC AB BC. Chú ý rằng: a. Với 3 điểm A B C bất kỳ ta luôn có: AB BC AC. Dấu bằng xảy ra khi và chỉ khi A B C thẳng hàng và điểm B nằm giữa hai điểm AC. b) Với 3 điểm A B C bất kỳ ta luôn có: AB AC BC. Dấu bằng xảy ra khi và chỉ khi A B C thẳng hàng và điểm B nằm giữa hai điểm AC. c) Cho hai điểm AB nằm về một phía đường thẳng d. Điểm M chuyển động trên đường thẳng d. Gọi A’ là điểm đối xứng với A qua d. Ta có kết quả sau: MA MB MA MB A B. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB’ và đường thẳng d (M trùng với M0). MA MB AB. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB và đường thẳng d (M trùng với M1). d) Cho hai điểm AB nằm về hai phía đường thẳng d. Điểm M chuyển động trên đường thẳng d. Gọi A’ là điểm đối xứng với A qua d. Ta có kết quả sau: MA MB AB. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB và đường thẳng d (M trùng với M0) MA MB MA MB A B. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB’ và đường thẳng d (M trùng với M1). e) Trong quá trình giải toán ta cần lưu ý tính chất: Đường vuông góc luôn nhỏ hơn hoặc bằng đường xiên. Trong hình vẽ: AH AB M1. 2) Trong một đường tròn, đường kính là dây cung lớn nhất. 3) Cho đường tròn O R và một điểm A. Đường thẳng AO cắt đường tròn tại hai điểm 1 2 M M. Giả sử AM AM 1 2. Khi đó với mọi điểm M nằm trên đường tròn ta luôn có: AM AM AM 1 2. SỬ DỤNG BẤT ĐẲNG THỨC CỔ ĐIỂN ĐỂ GIẢI BÀI TOÁN CỰC TRỊ Ở cấp THCS, các em học sinh được làm quen với bất đẳng thức Cauchy dạng 2 số hoặc 3 số. Để giải quyết tốt các bài toán hình học: Ta cần nắm chắc một số kết quả quan trọng sau: Trước hết ta cần nắm được các kết quả cơ bản sau: 1. Cho các số thực dương ab 2 4 2 a b a b ab ab a b ab. Dấu bằng xảy ra khi và chỉ khi a b. 2. Cho các số thực dương a b c a b c a b c abc abc. Dấu bằng xảy ra khi và chỉ khi a b c. Ngoài ra các em học sinh cần nắm chắc các công thức về diện tích tam giác liên hệ độ dài các cạnh và góc như: Diện tích hình chữ nhật; Diện tích hình thang; Diện tích hình vuông.
Chuyên đề quỹ tích ôn thi vào lớp 10
Tài liệu gồm 52 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề quỹ tích, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. PHƯƠNG PHÁP CHUNG ĐỂ GIẢI BÀI TOÁN QUỸ TÍCH I. Định nghĩa: Một hình H được gọi là tập hợp điểm (quỹ tích) của những điểm M thỏa mãn tính chất A khi và chỉ khi nó chứa và chỉ chứa những điểm có tính chất A. II. Phương pháp giải toán: Để tìm một tập hợp điểm M thỏa mãn tính chất A ta thường làm theo các bước sau: Bước 1: Tìm cách giải: + Xác định các yếu tố cố định, không đổi, các tính chất hình học có liên quan đến bài toán. + Xác định các điều kiện của điểm M. + Dự đoán tập hợp điểm. Bước 2: Trình bày lời giải: A. Phần thuận: Chứng minh điểm M thuộc hình H. B. Giới hạn: Căn cứ vào các vị trí đặc biệt của điểm M để chứng minh điểm M chỉ thuộc một phần B của hình H (nếu có). C. Phần đảo: Lấy điểm M bất kỳ thuộc B. Ta chứng minh điểm M thoả mãn các tính chất A. D. Kết luận: Tập hợp các điểm M là hình B (nêu rõ hình dạng và cách dựng hình B). III. Một số dạng quỹ tích cơ bản trong chương trình THCS: 1. TẬP HỢP ĐIỂM LÀ ĐƯỜNG TRUNG TRỰC: Tập hợp các điểm M cách đều hai điểm A B cho trước là đường trung trực của đoạn thẳng AB. 2. TẬP HỢP ĐIỂM LÀ TIA PHÂN GIÁC: Tập hợp các điểm M nằm trong góc xOy khác góc bẹt và cách đều hai cạnh của góc xOy là tia phân giác của góc xOy. 3. TẬP HỢP ĐIỂM LÀ ĐƯỜNG THẲNG, ĐƯỜNG THẲNG SONG SONG: Ta thường gặp các dạng tập hợp cơ bản như sau: 1. Tập hợp các điểm M nằm trên đường thẳng đi qua các điểm cố định A B là đường thẳng AB. 2. Tập hợp các điểm M nằm trên đường thẳng đi qua điểm cố định A tạo với đường thẳng d một góc không đổi. 3. Tập hợp các điểm M cách đường thẳng d cho trước một đoạn không đổi h là các đường thẳng song song với d và cách đường thẳng d một khoảng bằng h. 4. TẬP HỢP ĐIỂM LÀ ĐƯỜNG TRÒN, CUNG CHỨA GÓC: 1. Nếu A B cố định. Thì tập hợp các điểm M sao cho 0 AMB 90 là đường tròn đường kính AB (không lấy các điểm A B). 2. Nếu điểm O cố định thì tập hợp các điểm M cách O một khoảng không đổi R là đường tròn tâm O bán kính R. 3. Tập hợp các điểm M tạo thành với 2 đầu mút của đoạn thẳng AB cho trước một góc MAB không đổi 0 0 180 là hai cung tròn đối xứng nhau qua AB. Gọi tắt là “cung chứa góc”. MỘT SỐ BÀI TẬP TỔNG HỢP