Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm, tích phân và ứng dụng - Nguyễn Hoàng Việt

Tài liệu gồm 138 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nắm, các dạng toán thường gặp và bài tập tự luyện chuyên đề nguyên hàm, tích phân và ứng dụng, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3. MỤC LỤC : Chương 3 . NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG 1. §1 – TÍNH NGUYÊN HÀM – SỬ DỤNG ĐỊNH NGHĨA, BẢNG CÔNG THỨC 1. A KIẾN THỨC CẦN NHỚ 1. B CÁC DẠNG TOÁN THƯỜNG GẶP 2. + Dạng 1. Áp dụng bảng công thức nguyên hàm 2. + Dạng 2. Tách hàm dạng tích thành tổng 7. + Dạng 3. Tách hàm dạng phân thức thành tổng 9. C BÀI TẬP TỰ LUYỆN 14. §2 – TÍNH NGUYÊN HÀM – SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 17. A CÁC DẠNG TOÁN THƯỜNG GẶP 17. + Dạng 1. Đổi biến dạng hàm lũy thừa 17. + Dạng 2. Đổi biến dạng hàm phân thức 19. + Dạng 3. Đổi biến dạng hàm vô tỉ 20. + Dạng 4. Đổi biến dạng hàm lượng giác 22. + Dạng 5. Đổi biến dạng hàm mũ, hàm lô-ga-rit 24. B BÀI TẬP TỰ LUYỆN 27. §3 – TÍNH NGUYÊN HÀM – SỬ DỤNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN 30. A CÁC DẠNG TOÁN THƯỜNG GẶP 30. + Dạng 1. Nguyên hàm từng phần với “u = đa thức” 30. + Dạng 2. Nguyên hàm từng phần với “u = lôgarit” 31. + Dạng 3. Nguyên hàm kết hợp đổi biến số và từng phần 33. + Dạng 4. Nguyên hàm từng phần dạng “lặp” 35. + Dạng 5. Nguyên hàm từng phần dạng “hàm ẩn” 36. B BÀI TẬP TỰ LUYỆN 38. §4 – TÍNH TÍCH PHÂN – SỬ DỤNG ĐỊNH NGHĨA, TÍNH CHẤT 41. A CÁC DẠNG TOÁN THƯỜNG GẶP 41. + Dạng 1. Sử dụng định nghĩa, tính chất tích phân 41. + Dạng 2. Tách hàm dạng tích thành tổng các hàm cơ bản 45. + Dạng 3. Tách hàm dạng phân thức thành tổng các hàm cơ bản 47. B BÀI TẬP TỰ LUYỆN 51. §5 – TÍNH TÍCH PHÂN – SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 54. A CÁC DẠNG TOÁN THƯỜNG GẶP 54. + Dạng 1. Đổi biến loại t = u(x) 54. + Dạng 2. Lượng giác hóa 59. B BÀI TẬP TỰ LUYỆN 61. §6 – TÍNH TÍCH PHÂN – SỬ DỤNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN 65. A CÁC DẠNG TOÁN THƯỜNG GẶP 65. + Dạng 1. Tích phân từng phần với “u = đa thức” 65. + Dạng 2. Tích phân từng phần với “u = logarit” 67. B BÀI TẬP TỰ LUYỆN 70. §7 – TÍCH PHÂN HÀM ẨN 74. A CÁC DẠNG TOÁN THƯỜNG GẶP 74. + Dạng 1. Sử dụng tính chất tính phân không phụ thuộc biến 74. + Dạng 2. Tìm hàm f(x) bằng phương pháp đổi biến số 76. + Dạng 3. Tìm hàm f(x) bằng phương pháp đưa về “đạo hàm đúng” 77. + Dạng 4. Phương pháp tích phân từng phần 79. + Dạng 5. Phương pháp ghép bình phương 81. B BÀI TẬP TỰ LUYỆN 84. §8 – ỨNG DỤNG TÍCH PHÂN – TÍNH DIỆN TÍCH HÌNH PHẲNG 89. A CÁC DẠNG TOÁN THƯỜNG GẶP 89. + Dạng 1. Hình phẳng giới hạn bởi hai đồ thị y = f(x) và y = g(x) 89. + Dạng 2. Hình phẳng giới hạn bởi nhiều hơn hai đồ thị hàm số 97. + Dạng 3. Toạ độ hoá một số “mô hình” hình phẳng thực tế 99. B BÀI TẬP TỰ LUYỆN 103. §9 – ỨNG DỤNG TÍCH PHÂN – TÍNH THỂ TÍCH VẬT THỂ, KHỐI TRÒN XOAY 107. A CÁC DẠNG TOÁN THƯỜNG GẶP 107. + Dạng 1. Tính thể tích vật thể khi biết diện tích mặt cắt vuông góc với Ox 107. + Dạng 2. Tính thể tích của khối tròn xoay khi cho hình phẳng quay quanh trục Ox 108. + Dạng 3. Tọa độ hóa một số bài toán thực tế 113. B BÀI TẬP TỰ LUYỆN 117. §10 – ỨNG DỤNG TÍCH PHÂN – MỘT SỐ BÀI TOÁN CHUYỂN ĐỘNG 120. A CÁC DẠNG TOÁN THƯỜNG GẶP 120. + Dạng 1. Cho hàm vận tốc, tìm quãng đường di chuyển của vật 120. + Dạng 2. Cho đồ thị hàm vận tốc, tìm quãng đường di chuyển của vật 121. + Dạng 3. Cho hàm gia tốc, tìm quãng đường di chuyển của vật 122. B BÀI TẬP TỰ LUYỆN 124. §11 – ĐỀ TỔNG ÔN 126. A ĐỀ SỐ 1 126. B ĐỀ SỐ 2 129.

Nguồn: toanmath.com

Đọc Sách

Sử dụng tính chất của đồ thị hàm số để tính diện tích hình phẳng
Tài liệu gồm 58 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Toán VD – VDC, nội dung các dạng toán xoay quanh bài toán ứng dụng tích phân để tính diện tích hình phẳng với giả thiết bài toán cho bởi đồ thị hàm liên quan. + Dạng toán 1. Sử dụng định nghĩa xác định công thức diện tích. + Dạng toán 2. Dựa vào các điểm đồ thị đi qua xác định hàm số đi đến công thức tính. + Dạng toán 3. Dựa vào tâm đối xứng, trục đối xứng của đồ thị xác định hàm số đi đến công thức tính. + Dạng toán 4. Dựa vào tiếp tuyến của đồ thị xác định hàm số đi đến công thức tính. + Dạng toán 5. Biến đổi đồ thị đưa về tính toán đơn giản. + Dạng toán 6. Tính diện tích dựa vào việc chia nhỏ hình. + Dạng toán 7. Toán thực tế với giả thiết có đồ thị hàm liên quan. Các bài toán trắc nghiệm được trích dẫn và phát triển dựa trên các bài toán trong đề thi THPT Quốc gia môn Toán, có đáp án và lời giải chi tiết.
Các dạng toán ứng dụng của tích phân thường gặp trong kỳ thi THPTQG
Tài liệu ứng dụng của tích phân gồm 113 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập các câu hỏi và bài toán trắc nghiệm chủ đề ứng dụng của tích phân cùng các vấn đề liên quan, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được tác giả trích dẫn từ các đề thi THPT Quốc gia môn Toán những năm gần đây. Khái quát nội dung tài liệu các dạng toán ứng dụng của tích phân thường gặp trong kỳ thi THPTQG: PHẦN A . CÂU HỎI Dạng 1. Ứng dụng tích phân để tìm diện tích (Trang 1). + Dạng 1.1 Bài toán tính trực tiếp không có điều kiện (Trang 1). + Dạng 1.2 Bài toán có điều kiện (Trang 13). Dạng 2. Ứng dụng tích phân để tìm thể tích (Trang 23). + Dạng 2.1 Bài toán tính trực tiếp không có điều kiện (Trang 23). + Dạng 2.2 Bài toán có điều kiện (Trang 28). Dạng 3. Ứng dụng tích phân để giải bài toán chuyển động (Trang 30). + Dạng 3.1 Bài toán cho biết hàm số của vận tốc, quảng đường (Trang 30). + Dạng 3.2 Bài toán cho biết đồ thị của vận tốc, quảng đường (Trang 33). Dạng 4. Ứng dụng tích phân để giải một số bài toán thực tế (Trang 37). + Dạng 4.1 Bài toán liên quan đến diện tích (Trang 37). + Dạng 4.2 Bài toán liên quan đến thể tích (Trang 41). Dạng 5. Ứng dụng tích phân để giải quyết một số bài toán đại số (Trang 45). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng 1. Ứng dụng tích phân để tìm diện tích (Trang 48). + Dạng 1.1 Bài toán tính trực tiếp không có điều kiện (Trang 48). + Dạng 1.2 Bài toán có điều kiện (Trang 60). Dạng 2. Ứng dụng tích phân để tìm thể tích (Trang 74). + Dạng 2.1 Bài toán tính trực tiếp không có điều kiện (Trang 74). + Dạng 2.2 Bài toán có điều kiện (Trang 81). Dạng 3. Ứng dụng tích phân để giải bài toán chuyển động (Trang 84). + Dạng 3.1 Bài toán cho biết hàm số của vận tốc, quảng đường (Trang 84). + Dạng 3.2 Bài toán cho biết đồ thị của vận tốc, quảng đường (Trang 88). Dạng 4. Ứng dụng tích phân để giải một số bài toán thực tế (Trang 91). + Dạng 4.1 Bài toán liên quan đến diện tích (Trang 91). + Dạng 4.2 Bài toán liên quan đến thể tích (Trang 99). Dạng 5. Ứng dụng tích phân để giải quyết một số bài toán đại số (Trang 108). Xem thêm : + Các dạng toán nguyên hàm thường gặp trong kỳ thi THPTQG + Các dạng toán tích phân thường gặp trong kỳ thi THPTQG
Các dạng toán tích phân thường gặp trong kỳ thi THPTQG
Tài liệu tích phân và các phương pháp tìm tích phân gồm 109 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập các câu hỏi và bài toán trắc nghiệm chủ đề tích phân cùng các vấn đề liên quan, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được tác giả trích dẫn từ các đề thi THPT Quốc gia môn Toán những năm gần đây. Khái quát nội dung tài liệu các dạng toán tích phân thường gặp trong kỳ thi THPTQG: Phần A . CÂU HỎI Dạng 1. Tích phân cơ bản (Trang 2). + Dạng 1.1 Áp dụng TÍNH CHẤT để giải (Trang 2). + Dạng 1.2 Áp dụng bảng công thức cơ bản (Trang 4). Dạng 2. Tích phân HÀM HỮU TỶ (Trang 7). Dạng 3. Giải tích phân bằng phương pháp VI PHÂN (Trang 10). Dạng 4. Giải tích phân bằng phương pháp ĐỔI BIẾN SỐ (Trang 11). + Dạng 4.1 Hàm số tường minh (Trang 11). + Dạng 4.1.1 Hàm số chứa căn thức (Trang 11). + Dạng 4.1.2 Hàm số chứa hàm lượng giác (Trang 14). + Dạng 4.13. Hàm số chứa hàm số mũ, logarit (Trang 16). + Dạng 4.1.4 Hàm số hữu tỷ, đa thức (Trang 17). + Dạng 4.2 Hàm số không tường minh (hàm ẩn) (Trang 18). Dạng 5. Tích phân TỪNG PHẦN (Trang 22). + Dạng 5.1 Hàm số tường minh (Trang 22). + Dạng 5.2 Hàm số không tường minh (hàm ẩn) (Trang 25). Dạng 6. Kết hợp nhiều phương pháp để giải toán (Trang 29). Dạng 7. Tích phân của một số hàm số khác (Trang 31). + Dạng 7.1 Tích phân hàm số chứa dấu giá trị tuyệt đối (Trang 31). + Dạng 7.2 Tích phân nhiều công thức (Trang 32). + Dạng 7.3 Tích phân hàm số chẵn, lẻ (Trang 33). Dạng 8. Một số bài toán tích phân khác (Trang 34). [ads] Phần B . LỜI GIẢI THAM KHẢO Dạng 1. Tích phân cơ bản (Trang 38). + Dạng 1.1 Áp dụng TÍNH CHẤT để giải (Trang 38). + Dạng 1.2 Áp dụng bảng công thức cơ bản (Trang 40). Dạng 2. Tích phân HÀM HỮU TỶ (Trang 43). Dạng 3. Giải tích phân bằng phương pháp VI PHÂN (Trang 46). Dạng 4. Giải tích phân bằng phương pháp ĐỔI BIẾN SỐ (Trang 48). + Dạng 4.1. Hàm số tường minh (Trang 48). + Dạng 4.1.1. Hàm số chứa căn thức (Trang 48). + Dạng 4.1.2. Hàm số chứa hàm lượng giác (Trang 54). + Dạng 4.1.3. Hàm số chứa hàm số mũ, logarit (Trang 57). + Dạng 4.1.4. Hàm số hữu tỷ, đa thức (Trang 59). + Dạng 4.2. Hàm số không tường minh (hàm ẩn) (Trang 60). Dạng 5. Tích phân TỪNG PHẦN (Trang 68). + Dạng 5.1 Hàm số tường minh (Trang 68). + Dạng 5.2 Hàm số không tường minh (hàm ẩn) (Trang 74). Dạng 6. Kết hợp nhiều phương pháp để giải toán (Trang 88). Dạng 7. Tích phân của một số hàm số khác (Trang 91). + Dạng 7.1 Tích phân hàm số chứa dấu giá trị tuyệt đối (Trang 91). + Dạng 7.2. Tích phân nhiều công thức (Trang 95). + Dạng 7.3 Tích phân hàm số chẵn, lẻ (Trang 95). Dạng 8. Một số bài toán tích phân khác (Trang 100).
Các dạng toán nguyên hàm thường gặp trong kỳ thi THPTQG
Tài liệu nguyên hàm và các phương pháp tìm nguyên hàm gồm 75 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập các câu hỏi và bài toán trắc nghiệm chủ đề nguyên hàm cùng các vấn đề liên quan, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được tác giả trích dẫn từ các đề thi THPT Quốc gia môn Toán những năm gần đây. Khái quát nội dung tài liệu các dạng toán nguyên hàm thường gặp trong kỳ thi THPTQG: PHẦN A . CÂU HỎI Dạng 1. Nguyên hàm cơ bản (dùng bảng nguyên hàm) (Trang số 2). + Dạng 1.1 Tìm nguyên hàm cơ bản không có điều kiện (Trang số 2). + Dạng 1.2 Tìm nguyên hàm cơ bản có điều kiện (Trang số 11). Dạng 2. Sử dụng phương pháp VI PHÂN để tìm nguyên hàm (Trang số 16). + Dạng 2.1 Tìm nguyên hàm không có điều kiện (Trang số 16). + Dạng 2.2 Tìm nguyên hàm có điều kiện (Trang số 17). Dạng 3. Sử dụng phương pháp ĐỔI BIẾN để tìm nguyên hàm (Trang số 18). + Dạng 3.1 Tìm nguyên hàm không có điều kiện (Trang số 18). + Dạng 3.2 Tìm nguyên hàm có điều kiện (Trang số 21). Dạng 4. Nguyên hàm từng phần (Trang số 22). + Dạng 4.1 Tìm nguyên hàm không có điều kiện (Trang số 22). + Dạng 4.2 Tìm nguyên hàm có điều kiện (Trang số 25). Dạng 5. Sử dụng nguyên hàm để giải toán (Trang số 26). Dạng 6. Một số bài toán khác liên quan đến nguyên hàm (Trang số 30). [ads] PHẦN B . ĐÁP ÁN THAM KHẢO Dạng 1. Nguyên hàm cơ bản (dùng bảng nguyên hàm) (Trang số 33). + Dạng 1.1 Tìm nguyên hàm cơ bản không có điều kiện (Trang số 33). + Dạng 1.2 Tìm nguyên hàm cơ bản có điều kiện (Trang số 38). Dạng 2. Sử dụng phương pháp VI PHÂN để tìm nguyên hàm (Trang số 44). + Dạng 2.1 Tìm nguyên hàm không có điều kiện (Trang số 44). + Dạng 2.2 Tìm nguyên hàm có điều kiện (Trang số 45). Dạng 3. Sử dụng phương pháp ĐỔI BIẾN để tìm nguyên hàm (Trang số 47). + Dạng 3.1 Tìm nguyên hàm không có điều kiện (Trang số 47). + Dạng 3.2 Tìm nguyên hàm có điều kiện (Trang số 51). Dạng 4. Nguyên hàm từng phần (Trang số 53). + Dạng 4.1 Tìm nguyên hàm không có điều kiện (Trang số 53). + Dạng 4.2 Tìm nguyên hàm có điều kiện (Trang số 57). Dạng 5. Sử dụng nguyên hàm để giải toán (Trang số 60) Dạng 6. Một số bài toán khác liên quan đến nguyên hàm (Trang số 69). Tài liệu giúp quý thầy, cô giáo có nguồn bài tập chất lượng về nguyên hàm để tham khảo, các em học sinh học tốt chương trình Giải tích 12 chương 3 và ôn tập chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia môn Toán.