Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm, tích phân và ứng dụng - Nguyễn Hoàng Việt

Tài liệu gồm 138 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nắm, các dạng toán thường gặp và bài tập tự luyện chuyên đề nguyên hàm, tích phân và ứng dụng, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3. MỤC LỤC : Chương 3 . NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG 1. §1 – TÍNH NGUYÊN HÀM – SỬ DỤNG ĐỊNH NGHĨA, BẢNG CÔNG THỨC 1. A KIẾN THỨC CẦN NHỚ 1. B CÁC DẠNG TOÁN THƯỜNG GẶP 2. + Dạng 1. Áp dụng bảng công thức nguyên hàm 2. + Dạng 2. Tách hàm dạng tích thành tổng 7. + Dạng 3. Tách hàm dạng phân thức thành tổng 9. C BÀI TẬP TỰ LUYỆN 14. §2 – TÍNH NGUYÊN HÀM – SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 17. A CÁC DẠNG TOÁN THƯỜNG GẶP 17. + Dạng 1. Đổi biến dạng hàm lũy thừa 17. + Dạng 2. Đổi biến dạng hàm phân thức 19. + Dạng 3. Đổi biến dạng hàm vô tỉ 20. + Dạng 4. Đổi biến dạng hàm lượng giác 22. + Dạng 5. Đổi biến dạng hàm mũ, hàm lô-ga-rit 24. B BÀI TẬP TỰ LUYỆN 27. §3 – TÍNH NGUYÊN HÀM – SỬ DỤNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN 30. A CÁC DẠNG TOÁN THƯỜNG GẶP 30. + Dạng 1. Nguyên hàm từng phần với “u = đa thức” 30. + Dạng 2. Nguyên hàm từng phần với “u = lôgarit” 31. + Dạng 3. Nguyên hàm kết hợp đổi biến số và từng phần 33. + Dạng 4. Nguyên hàm từng phần dạng “lặp” 35. + Dạng 5. Nguyên hàm từng phần dạng “hàm ẩn” 36. B BÀI TẬP TỰ LUYỆN 38. §4 – TÍNH TÍCH PHÂN – SỬ DỤNG ĐỊNH NGHĨA, TÍNH CHẤT 41. A CÁC DẠNG TOÁN THƯỜNG GẶP 41. + Dạng 1. Sử dụng định nghĩa, tính chất tích phân 41. + Dạng 2. Tách hàm dạng tích thành tổng các hàm cơ bản 45. + Dạng 3. Tách hàm dạng phân thức thành tổng các hàm cơ bản 47. B BÀI TẬP TỰ LUYỆN 51. §5 – TÍNH TÍCH PHÂN – SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 54. A CÁC DẠNG TOÁN THƯỜNG GẶP 54. + Dạng 1. Đổi biến loại t = u(x) 54. + Dạng 2. Lượng giác hóa 59. B BÀI TẬP TỰ LUYỆN 61. §6 – TÍNH TÍCH PHÂN – SỬ DỤNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN 65. A CÁC DẠNG TOÁN THƯỜNG GẶP 65. + Dạng 1. Tích phân từng phần với “u = đa thức” 65. + Dạng 2. Tích phân từng phần với “u = logarit” 67. B BÀI TẬP TỰ LUYỆN 70. §7 – TÍCH PHÂN HÀM ẨN 74. A CÁC DẠNG TOÁN THƯỜNG GẶP 74. + Dạng 1. Sử dụng tính chất tính phân không phụ thuộc biến 74. + Dạng 2. Tìm hàm f(x) bằng phương pháp đổi biến số 76. + Dạng 3. Tìm hàm f(x) bằng phương pháp đưa về “đạo hàm đúng” 77. + Dạng 4. Phương pháp tích phân từng phần 79. + Dạng 5. Phương pháp ghép bình phương 81. B BÀI TẬP TỰ LUYỆN 84. §8 – ỨNG DỤNG TÍCH PHÂN – TÍNH DIỆN TÍCH HÌNH PHẲNG 89. A CÁC DẠNG TOÁN THƯỜNG GẶP 89. + Dạng 1. Hình phẳng giới hạn bởi hai đồ thị y = f(x) và y = g(x) 89. + Dạng 2. Hình phẳng giới hạn bởi nhiều hơn hai đồ thị hàm số 97. + Dạng 3. Toạ độ hoá một số “mô hình” hình phẳng thực tế 99. B BÀI TẬP TỰ LUYỆN 103. §9 – ỨNG DỤNG TÍCH PHÂN – TÍNH THỂ TÍCH VẬT THỂ, KHỐI TRÒN XOAY 107. A CÁC DẠNG TOÁN THƯỜNG GẶP 107. + Dạng 1. Tính thể tích vật thể khi biết diện tích mặt cắt vuông góc với Ox 107. + Dạng 2. Tính thể tích của khối tròn xoay khi cho hình phẳng quay quanh trục Ox 108. + Dạng 3. Tọa độ hóa một số bài toán thực tế 113. B BÀI TẬP TỰ LUYỆN 117. §10 – ỨNG DỤNG TÍCH PHÂN – MỘT SỐ BÀI TOÁN CHUYỂN ĐỘNG 120. A CÁC DẠNG TOÁN THƯỜNG GẶP 120. + Dạng 1. Cho hàm vận tốc, tìm quãng đường di chuyển của vật 120. + Dạng 2. Cho đồ thị hàm vận tốc, tìm quãng đường di chuyển của vật 121. + Dạng 3. Cho hàm gia tốc, tìm quãng đường di chuyển của vật 122. B BÀI TẬP TỰ LUYỆN 124. §11 – ĐỀ TỔNG ÔN 126. A ĐỀ SỐ 1 126. B ĐỀ SỐ 2 129.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề nguyên hàm, tích phân và ứng dụng - Trần Quốc Nghĩa
Tài liệu gồm 224 trang phân dạng và hướng dẫn giải các dạng toán nguyên hàm, tích phân và ứng dụng kèm theo các bài tập trắc nghiệm và tự luận có đáp án, lời giải chi tiết. Tài liệu được biên soạn bởi thầy Trần Quốc Nghĩa. Nội dung tài liệu : Vấn đề 1 . Nguyên hàm của hàm số + Dạng 1. Dùng định nghĩa nguyên hàm + Dạng 2. Tìm nguyên hàm dựa vào bảng công thức + Dạng 3. Tìm nguyên hàm bằng phương pháp phân tích + Dạng 4. Tìm nguyên hàm bằng phương pháp đổi biến số và phương pháp sử dụng gián tiếp bảng nguyên hàm + Dạng 5. Tìm nguyên hàm bằng phương pháp đổi từng phần + Dạng 6. Tìm nguyên hàm bằng cách thêm, bớt vào biểu thức dưới dấu tích phân + Dạng 7. Nguyên hàm có điều kiện Vấn đề 2 . Tích phân + Dạng 1. Tính tích phân bằng định nghĩa + Dạng 2. Tính tích phân bằng cách sử dụng tính chất của tích phân + Dạng 3. Tính tích phân thông qua tính diện tích hình phẳng + Dạng 4. Tính tích phân hàm đa thức bằng phương pháp phân tích + Dạng 5. Tính tích phân hàm lượng giác bằng phương pháp phân tích + Dạng 6. Tính tích phân hàm hữu tỉ + Dạng 7. Tính tích phân hàm chứa dấu giá trị tuyệt đối. Tích phân min, max + Dạng 8. Tính tích phân bằng phương pháp đổi biến + Dạng 9. Tính tích phân bằng phương pháp tích phân từng phần + Dạng 10. Những bài tích phân tính được bằng nhiều phương pháp + Dạng 11. Chứng minh đẳng thức, bất đẳng thức tích phân + Dạng 12. Tích phân truy hồi + Dạng 13. Hàm số dưới dạng tích phân [ads] Vấn đề 3 . Ứng dụng nguyên hàm – tích phân + Dạng 1. Diện tích hình phẳng + Dạng 2. Thể tích + Dạng 3. Ứng dụng tích phân để tìm khoảng đơn điệu của hàm số từ đó phác họa đồ thị của hàm số + Dạng 4. Sử dụng tích phân trong chứng minh đẳng thức của nCk + Dạng 5. Sử dụng tích phân trong bài toán chuyển động + Dạng 6. Sử dụng tích phân trong tính công của lực tác dụng + Dạng 7. Sử dụng tích phân trong bài toán tăng trưởng và phát triển Vấn đề 4 . Nguyên hàm, tích phân và ứng dụng trong các đề thi Đại học – Cao đẳng – THPT Quốc gia 
Giải nhanh nguyên hàm, tích phân và ứng dụng bằng máy tính Casio - Hoàng Văn Bình
Tài liệu gồm 44 trang hướng dẫn giải nhanh nguyên hàm, tích phân và ứng dụng bằng máy tính Casio – Vinacal, rất hữu ích khi giải toán trắc nghiệm, tài liệu được biên soạn bởi tác giả Hoàng Văn Bình. Tài liệu bao gồm lý thuyết cơ bản, các công tính nguyên hàm, tích phân, cách giải các dạng toán và hướng dẫn vận dụng máy tính cầm tay Casio để giải nhanh. Các bài toán nguyên hàm, tích phân và ứng dụng trong tài liệu được trích dẫn từ các đề thi thử môn Toán.
Chuyên đề nguyên hàm - Lại Văn Tôn
Tài liệu gồm 48 trang bao gồm lý thuyết nguyên hàm, công thức nguyên hàm cơ bản và mở rộng, các dạng toán nguyên hàm, ví dụ minh họa và bài tập trắc nghiệm – tự luận chuyên đề nguyên hàm, tài liệu được biên soạn bởi thầy giáo Lại Văn Tôn. Nội dung tài liệu chuyên đề nguyên hàm : 1. ĐỊNH NGHĨA NGUYÊN HÀM 2. NGUYÊN HÀM CỦA CÁC HÀM SƠ CẤP 2.1. Bảng nguyên hàm các hàm sơ cấp 2.2. Các ví dụ minh họa 3. CÁC TÍNH CHẤT CỦA NGUYÊN HÀM 4. TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP PHÂN TÍCH 4.1. Các công thức, kỹ năng phân tích cần nhớ 4.2. Các dạng phân tích cơ bản 4.2.1. Biến đổi căn thức, hàm mũ về dạng lũy thừa, mũ cơ bản 4.2.2. Phân tích hàm hữu tỉ 4.2.3. Phân tích hàm lượng giác 4.2.4. Phân tích hàm siêu việt [ads] 5. TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP ĐỔI BIẾN 5.1. Một số ví dụ mở đầu về phương pháp đổi biến 5.2. Đổi biến hàm hữu tỉ, hàm căn thức đơn giản, hàm mũ – logarit 5.3. Đổi biến hàm lượng giác 5.4. Đổi biến hàm vô tỉ 6. TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN 6.1. Lý thuyết nguyên hàm từng phần 6.2. Các ví dụ minh họa 7. GIỚI THIỆU MỘT SỐ BÀI TẬP ĐỊNH DẠNG TRẮC NGHIỆM 7.1. Các câu hỏi lý thuyết 7.2. Tìm nguyên hàm cụ thể 7.3. Tìm một nguyên hàm riêng, tính giá trị của nguyên hàm tìm được
Chuyên đề tự luận nguyên hàm, tích phân và ứng dụng - Nguyễn Chiến
Tài liệu gồm 67 trang hướng dẫn giải các dạng toán tự luận nguyên hàm, tích phân và ứng dụng trong chương trình Giải tích 12 chương 3, tài liệu được biên soạn bởi thầy Nguyễn Chiến. Nội dung tài liệu : + Phần 1. Nguyên hàm: Gồm định nghĩa, định lý và các tính chất của nguyên hàm, bảng nguyên hàm các hàm số thường gặp và mở rộng, các phương pháp tìm nguyên hàm. + Phần 2. Tích phân: Gồm công thức tính và tính chất của tích phân, các phương pháp tính tích phân. + Phần 3. Ứng dụng tích phân. Trong mỗi phần đều gồm lý thuyết SGK, phân dạng toán, hướng dẫn giải, ví dụ mẫu có lời giải chi tiết và tổng hợp các bài toán tự luận nguyên hàm, tích phân và ứng dụng đặc sắc.