Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

03 đề thi thử giữa học kì 1 Toán 10 Kết Nối Tri Thức Với Cuộc Sống

Tài liệu gồm 24 trang, được biên soạn bởi thầy giáo Trương Văn Tâm, tuyển chọn 03 đề thi thử giữa học kì 1 Toán 10 Kết Nối Tri Thức Với Cuộc Sống; các đề thi được biên soạn theo dạng đề 70% trắc nghiệm + 30% tự luận (theo điểm số), trong đó phần trắc nghiệm gồm 35 câu và phần tự luận gồm 04 câu, thời gian làm bài 90 phút, đề thi có đáp án giúp học sinh tra khảo kết quả. Trích dẫn 03 đề thi thử giữa học kì 1 Toán 10 Kết Nối Tri Thức Với Cuộc Sống : + Một công ty cần thuê xe để chở 120 người và 6,5 tấn hàng. Nơi thuê xe có hai loại xe A và B , trong đó loại xe A có 9 chiếc và loại xe B có 8 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu đồng, một chiếc xe loại B cho thuê với giá 3 triệu đồng. Biết rằng mỗi chiếc xe loại A có thể chở tối đa 20 người và 0,5 tấn hàng; mỗi chiếc xe loại B có thể chở tối đa 10 người và 2 tấn hàng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí bỏ ra là thấp nhất? + Trong một dây chuyển sản xuất có hai công nhân là An và Bình. Dây chuyền này sản xuất ra sản phẩm loại I và loại II. Mỗi sản phẩm loại I, loại II bán ra thu về lợi nhuận lần lượt là 35000 đồng và 50000 đồng. Để sản xuất được sản phẩm loại I thì An phải làm việc trong 1 giờ, Bình phải làm việc trong 30 phút. Để sản xuất được sản phẩm loại II thì An phải làm việc trong 30 phút, Bình phải làm việc trong 45 phút. Một người không thể làm đồng thời hai loại sản phẩm. Biết rằng trong một ngày An không thể làm việc quá 12 giờ, Bình không thể làm việc quá 10 giờ. Tìm lợi nhuận lớn nhất trong một ngày của dây chuyền sản xuất. + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30g đường, 1 lít nước và 1g hương liệu; pha chế 1 lít nước táo cần 10g đường, 1 lít nước và 4g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước trái cây mỗi loại để đạt được số điểm thưởng cao nhất?

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa HK1 Toán 10 năm 2020 - 2021 trường THPT Trần Văn Dư - Quảng Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh khối 10 đề thi giữa HK1 Toán 10 năm học 2020 – 2021 trường THPT Trần Văn Dư – Quảng Nam; đề thi được biên soạn theo dạng trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 15 câu, chiếm 05 điểm, phần tự luận gồm 03 câu, chiếm 05 điểm, thời gian học sinh làm bài kiểm tra là 60 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa HK1 Toán 10 năm 2020 – 2021 trường THPT Trần Văn Dư – Quảng Nam : + Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi M, N, P lần lượt là điểm đối xứng của O qua các đường thẳng BC, CA, AB. Gọi H là trực tâm tam giác ABC và L là trọng tâm tam giác MNP. Chứng minh 3 điểm O, H, L thẳng hàng. + Phát biểu nào sau đây đúng? A. Hai vectơ bằng nhau thì độ dài của chúng bằng nhau. B. Hai vectơ không bằng nhau thì chúng không cùng phương. C. Hai vectơ không bằng nhau thì độ dài của chúng không bằng nhau. D. Hai vectơ có độ dài không bằng nhau thì không cùng hướng. + Trong các câu sau đây, câu nào là mệnh đề? A. Bạn có chăm học không? B. Việt Nam là một nước thuộc châu Á. C. Các bạn hãy làm bài đi. D. x + 2 là số nguyên tố.
Đề thi giữa kì 1 Toán 10 năm 2020 - 2021 trường THPT Đoàn Thượng - Hải Dương
Ngày … tháng 11 năm 2020, trường THPT Đoàn Thượng, huyện Gia Lộc, tỉnh Hải Dương tổ chức kỳ thi kiểm tra khảo sát chất lượng môn Toán đối với học sinh khối 10 giai đoạn giữa học kì 1 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 10 năm 2020 – 2021 trường THPT Đoàn Thượng – Hải Dương gồm 02 trang với 20 câu tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 10 năm 2020 – 2021 trường THPT Đoàn Thượng – Hải Dương : + Lập mệnh đề phủ định của mệnh đề: “Em không là học sinh trường THPT ĐOÀN THƯỢNG”. + Cho 3 điểm A, B, C không thẳng hàng. Hãy kể tên các véc tơ khác 0, có điểm đầu và điểm ngọn lấy trong các điểm nêu trên? Những véc tơ nào cùng chiều với AC? + Cho tam giác ABC. Trên cạnh AC lấy điểm D, trên cạnh BC lấy điểm E sao cho AD = 3DC, EC = 2BE. Với k là số thực tuỳ ý, lấy các điểm P, Q sao cho AP = kAD, BQ = kBE. Chứng minh rằng trung điểm của đoạn thẳng PQ luôn thuộc một đường thẳng cố định khi k thay đổi.
Đề thi giữa kì 1 Toán 10 năm 2020 - 2021 trường THPT Phan Đình Phùng - Hà Nội
Thứ Năm ngày 12 tháng 11 năm 2020, trường THPT Phan Đình Phùng, quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng môn Toán đối với học sinh khối 10 giai đoạn giữa học kì 1 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 10 năm 2020 – 2021 trường THPT Phan Đình Phùng – Hà Nội mã đề 123 gồm 02 trang, đề được biên soạn theo dạng đề trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 12 câu, phần tự luận gồm 05 câu, thời gian làm bài 60 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 10 năm 2020 – 2021 trường THPT Phan Đình Phùng – Hà Nội : + Trong các khẳng định sau, khẳng định nào sai? A. Nếu I là trung điểm đoạn AB thì AI + IB = AB. B. Nếu I là trung điểm đoạn AB thì AI + BI = 0. C. Nếu I là trung điểm đoạn AB thì IA + BI = 0. D. Nếu I là trung điểm đoạn AB thì IA + IB = 0. + Trong mặt phẳng toạ độ Oxy, cho đường thẳng d có phương trình y = 5x – 1. a) Tìm toạ độ giao điểm của đường thẳng d với các trục toạ độ. b) Vẽ đồ thị hàm số y = |5x – 1|. + Cho hàm số f(x) = |2x + 1| + |1 − 2x|. Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng? A. f là hàm số chẵn. B. f là hàm số lẻ. C. f là hàm số không có tính chẵn lẻ. D. f là hàm số vừa chẵn vừa lẻ.
Đề thi giữa HK1 Toán 10 năm 2020 - 2021 trường THPT Hùng Vương - Quảng Nam
Đề thi giữa HK1 Toán 10 năm 2020 – 2021 trường THPT Hùng Vương – Quảng Nam gồm 02 trang với 15 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 60 phút, kỳ thi được diễn ra vào ngày … tháng 11 năm 2020, đề thi có đáp án và lời giải. Trích dẫn đề thi giữa HK1 Toán 10 năm 2020 – 2021 trường THPT Hùng Vương – Quảng Nam : + Câu nào sau đây là một mệnh đề? A. Có bao nhiêu số tự nhiên có hai chữ số? B. Số 2 là số chẵn phải không? C. Lạnh quá! D. Số 3 là một số chẵn. + Cho hình bình hành ABCD, gọi M, N, P lần lượt là trọng tâm của tam giác ABC, tam giác BCD, tam giác AMN và H, K là hai điểm thỏa HA + 2/5.HB = 0; KB = mKC. Hãy phân tích vectơ HP theo HB, HC và tìm m biết H, K, P thẳng hàng. + Cho hàm số bậc hai y = f(x) có đồ thị như hình bên dưới. Hỏi có bao nhiêu giá trị nguyên của tham số để phương trình 2f(x) – m = 0 có hai nghiệm phân biệt x1; x2 thỏa mãn điều kiện -1 < x1 < 0 < x2.