Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Vở bài tập Toán 9 tập 1 phần Hình học

Tài liệu gồm 103 trang, tuyển tập các dạng bài tập trắc nghiệm và tự luận môn Toán 9 tập 1 phần Hình học. CHƯƠNG 1 . HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG. Bài 1. MỘT SỐ HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG. Dạng 1: Tính độ dài đoạn thẳng và các yếu tố khác dựa vào hệ thức liên hệ giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền. Dạng 2: Tính độ dài dựa vào hệ thức liên quan đến đường cao. Dạng 3: Chứng minh các hệ thức hình học. Bài 2. TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN. Dạng 1: Tính tỉ số lượng giác của góc nhọn trong tam giác vuông khi biết độ dài hai cạnh. Dạng 2: Dựng góc nhọn α khi biết tỉ số lượng giác của góc nhọn đó bằng m/n. Dạng 3: Chứng minh hệ thức lượng giác. Dạng 4: Biết một giá trị lượng giác của góc nhọn, tính các tỉ số lượng giác khác của góc đó. Dạng 5: Tính giá trị lượng giác với các góc đặc biệt (không dùng máy tính hoặc bảng số). Dạng 6: So sánh các tỉ số lượng giác mà không dùng máy tính hoặc bảng số. Dạng 7: Tìm góc nhọn α thỏa đẳng thức cho trước. Bài 4-5. MỘT SỐ HỆ THỨC VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG ỨNG DỤNG THỰC TẾ CÁC TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN. Dạng 1: Giải tam giác vuông. Dạng 2: Giải tam giác nhọn. Dạng 3: Tính diện tích tam giác, tứ giác. Dạng 4: Ứng dụng thực tế của hệ thức lượng trong tam giác vuông. Bài. ÔN TẬP CHƯƠNG I. Dạng 1: So sánh các tỉ số lượng giác. Dạng 2: Rút gọn và tính giá trị của biểu thức lượng giác. Dạng 3: Tính độ dài đoạn thẳng, tính số đo góc. Dạng 4: Chứng minh hệ thức giữa các tỉ số lượng giác. CHƯƠNG 2 . ĐƯỜNG TRÒN. Bài 1. SỰ XÁC ĐỊNH CỦA ĐƯỜNG TRÒN. TÍNH CHẤT ĐỐI XỨNG CỦA ĐƯỜNG TRÒN. Dạng 1: Xác định tâm và bán kính của đường tròn đi qua nhiều điểm. Dạng 2: Xác định vị trí của điểm và đường tròn. Dạng 3: Dựng đường tròn thỏa mãn yêu cầu cho trước. Bài 2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN. Dạng 1: So sánh các đoạn thẳng. Dạng 2: Chứng minh hai đoạn thẳng bằng nhau. Bài 3. LIÊN HỆ GIỮA DÂY VÀ KHOẢNG CÁCH TỪ TÂM ĐẾN DÂY. Dạng 1: Tính độ dài đoạn thẳng. Chứng minh đoạn thẳng bằng nhau. Dạng 2: So sánh độ dài các đoạn thẳng. Bài 4. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN. Dạng 1: Xác định vị trí tương đối của đường thẳng và đường tròn. Dạng 2: Bài toán liên quan đến tính độ dài. Bài 5. DẤU HIỆU NHẬN BIẾT TIẾP TUYẾN CỦA ĐƯỜNG TRÒN. Dạng 1: Chứng minh một đường thẳng là tiếp tuyến của đường tròn. Dạng 2: Bài toán liên quan đến tính độ dài. Bài 6. TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU. Dạng 1: Chứng minh hai đoạn thẳng bằng nhau, hai đường thẳng song song, hai đường thẳng vuông góc. Dạng 2: Tính độ dài đoạn thẳng. Tính số đo góc. Bài 7. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN. Dạng 1: Chứng minh song song, vuông góc. Dạng 2: Tính độ dài đoạn thẳng. Chứng minh đoạn thẳng bằng nhau. Bài 8. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN (TT). Dạng 1: Xác định vị trí tương đối của hai đường tròn. Dạng 2: Các bài toán liên quan đến hai đường tròn tiếp xúc nhau. Bài. ÔN TẬP CHƯƠNG II.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hệ hai phương trình bậc nhất hai ẩn
Tài liệu gồm 38 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hệ hai phương trình bậc nhất hai ẩn, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 3 bài số 2. A. KIẾN THỨC TRỌNG TÂM 1. Hệ hai phương trình bậc nhất hai ẩn. 2. Minh họa hình học tập nghiệm của hệ hai phương trình bậc nhất hai ẩn. 3. Hệ phương trình tương đương. B. CÁC DẠNG BÀI MINH HỌA Dạng 1: Đoán nhận số nghiệm của hệ phương trình. Dạng 2: Giải hệ phương trình bằng phương pháp hình học. Dạng 3: Hai hệ phương trình tương đương. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN
Chuyên đề đồ thị hàm số y ax + b (a khác 0)
Tài liệu gồm 46 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề đồ thị hàm số y = ax + b (a khác 0), hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 3. A. KIẾN THỨC CẦN NHỚ 1. Đồ thị hàm số bậc nhất. 2. Cách vẽ đồ thị của hàm số bậc nhất. 3. Chú ý. B. CÁC DẠNG BÀI TẬP MINH HỌA Dạng 1: Vẽ đồ thị hàm số bậc nhất. Dạng 2: Tìm tham số m để hàm số là hàm số bậc nhất, đồng biến, nghịch biến. Dạng 3 : Xét tính đồng quy của ba đường thẳng. Dạng 4: Tìm điểm cố định của đường thẳng phụ thuộc tham số. Dạng 5: Tính chu vi và diện tích tam giác. C. TRẮC NGHIỆM RÈN PHẢN XẠ
Chuyên đề đường thẳng song song và đường thẳng cắt nhau
Tài liệu gồm 25 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề đường thẳng song song và đường thẳng cắt nhau, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 4. A. KIẾN THỨC CẦN NHỚ 1. Hệ số góc của đường thẳng y = ax + b (a khác 0). 2. Đường thẳng song song và đường thẳng cắt nhau. B. CÁC DẠNG MINH HỌA Dạng 1 : Xét vị trí tương đối của hai đường thẳng. Phương pháp giải: Cho hai đường thẳng: d: y = ax + b với a khác 0 và d’: y = a’x + b’ với a’ khác 0, khi đó ta có: 1. d và d’ song song khi và chỉ khi a = a’ và b khác b’. 2. d và d’ trùng nhau khi và chỉ khi a = a’ và b = b’. 3. d và d’ cắt nhau khi và chỉ khi a khác a’ . Đặc biệt d và d’ vuông góc với nhau khi và chỉ khi a.a’ = -1. Dạng 2 : Xác định phương trình đường thẳng. Phương pháp giải: Để xác định phương trình đường thẳng, ta thường làm như sau: Bước 1: Gọi d: y = ax + b là phương trình đường thẳng cần tìm (a và b là hằng số). Bước 2: Từ giả thiết của đề bài, tìm được a và b từ đó đi đến kết luận. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề hệ số góc của đường thẳng y ax + b (a khác 0)
Tài liệu gồm 16 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hệ số góc của đường thẳng y = ax + b (a khác 0), hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 5. A. TÓM TẮT LÍ THUYẾT B. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 : Tìm hệ số góc của đường thẳng. Phương pháp giải: Sử dụng các kiến thức liên quan đến vị trí tương đối giữa hai đừng thẳng và hệ số góc của đường thẳng. Dạng 2 : Xác định góc tạo bởi đường thẳng và tia Ox. Phương pháp giải: Để xác định góc giữa đường thẳng d và tia Ox, ta làm như sau: Cách 1. Vẽ d trên mặt phẳng tọa độ và sử dụng tỉ số lượng giác của tam giác vuông một cách phù hợp. Cách 2. Gọi α là góc tạo bởi tia Ox và d. Ta có: + Nếu α < 90° thì a > 0 và a = tanα. + Nếu α > 90° thì a < 0 và a = -tan(180° – α). Dạng 3 : Xác định đường thẳng biết hệ số góc. Phương pháp giải: Gọi phương trình đường thẳng cần tìm là d: y = ax + b. Ta cần xác định a và b dựa vào các kiến thức về góc và hệ số góc. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ