Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra giữa học kì 2 (HK2) lớp 9 môn Toán năm 2021 2022 sở GD ĐT Bắc Ninh

Nội dung Đề kiểm tra giữa học kì 2 (HK2) lớp 9 môn Toán năm 2021 2022 sở GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề kiểm tra giữa học kì 2 (HK2) lớp 9 môn Toán năm 2021 2022 sở GD ĐT Bắc Ninh Đề kiểm tra giữa học kì 2 (HK2) lớp 9 môn Toán năm 2021 2022 sở GD ĐT Bắc Ninh Xin chào quý thầy, cô giáo và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến các bạn đề kiểm tra khảo sát chất lượng giữa học kỳ 2 môn Toán lớp 9 năm học 2021 – 2022 của sở Giáo dục và Đào tạo tỉnh Bắc Ninh. Kỳ thi sẽ diễn ra vào thứ Tư ngày 30 tháng 03 năm 2022. Đề thi bao gồm các câu hỏi trắc nghiệm và lời giải chi tiết tự luận. Dưới đây là một số câu hỏi trích dẫn từ đề kiểm tra: Giải bài toán bằng cách lập hệ phương trình: Nhân ngày tết trồng cây, hai lớp 9A và 9B có tổng 78 học sinh tham gia trồng cây. Mỗi học sinh lớp 9A trồng được 3 cây, mỗi học sinh lớp 9B trồng được 2 cây, và số cây lớp 9A trồng được nhiều hơn số cây lớp 9B trồng được là 34 cây. Hãy tính số học sinh mỗi lớp tham gia trồng cây. Cho đường tròn tâm O đường kính AB. Dây CD vuông góc với AB tại E (E nằm giữa A và O; E không trùng A, không trùng O). Lấy điểm M thuộc cung nhỏ BC sao cho cung MB nhỏ hơn cung MC. Dây AM cắt CD tại F. Tia BM cắt đường thẳng CD tại K. a) Chứng minh tứ giác BMFE nội tiếp. b) Chứng minh BF vuông góc với AK và EK = EF = EA = EB. c) Tiếp tuyến của O tại M cắt tia KD tại I. Chứng minh IK = IF. Từ một điểm M nằm ngoài đường tròn O, vẽ tiếp tuyến MT và cát tuyến MCD đi qua tâm O. Cho MT = 20 cm và MD = 40 cm. Khi đó, R bằng bao nhiêu? Hy vọng rằng các em sẽ tự tin và làm tốt trong kỳ thi này. Chúc quý thầy, cô giáo và các em học sinh lớp 9 đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa kỳ 2 Toán 9 năm 2020 - 2021 trường THCS Sơn Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi giữa kỳ 2 Toán 9 năm học 2020 – 2021 trường THCS Sơn Đông, thị xã Sơn Tây, thành phố Hà Nội.
Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 phòng GDĐT Hà Đông - Hà Nội
Thứ Tư ngày 31 tháng 03 năm 2021, phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng giữa kì 2 môn Toán lớp 9 năm học 2020 – 2021. Đề thi giữa kì 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hà Đông – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài 60 phút.
Đề thi giữa HK2 Toán 9 năm 2020 - 2021 trường THCS Hoàng Hoa Thám - Hà Nội
Đề thi giữa HK2 Toán 9 năm 2020 – 2021 trường THCS Hoàng Hoa Thám – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 trường Lương Thế Vinh - Hà Nội
Đề thi giữa kì 2 Toán 9 năm học 2020 – 2021 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi giữa kì 2 Toán 9 năm 2020 – 2021 trường Lương Thế Vinh – Hà Nội : + Hai bạn An và Tâm được phân công chuẩn bị tài liệu cho buổi thuyết trình trước lớp về ý nghĩa của “Giờ trái đất”. Biết rằng nếu hai bạn cùng làm thì sau 2 giờ 24 phút sẽ xong. Nhưng khi làm chung được 1 giờ thì Tâm có việc bận phải về, còn một mình An làm nốt trong 2 giờ 20 phút nữa mới xong. Hỏi nếu mỗi bạn làm một mình thì sau bao lâu sẽ xong công việc? + Cho các đường thẳng (d): y = -2x + 3; (d’): y = (m – 1)x + 2m – 1 và parabol (P): y = x2. a) Tìm tọa độ giao điểm của (d) và (P). b) Tìm m biết đường thẳng (d’) song song với đường thẳng (d). Khi đó, giả sử (d’) cắt Ox tại A, cắt Oy tại B. Tính diện tích tam giác OAB. c) Tìm m để (d’) cắt (P) tại 2 điểm phân biệt D, E sao cho trung điểm I của DE nằm trên Oy. + Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB với (O) (B là tiếp điểm); đường thẳng d đi qua A và cắt (O) tại C, D (C nằm giữa A và D). Gọi I là trung điểm của CD. a) Chứng minh các điểm A, B, I và O cùng nằm trên một đường tròn. b) Chứng minh AC.AD = AB2. c) Qua B kẻ đường thẳng vuông góc với OA, đường thẳng này cắt (O;R) tại E. Chứng minh AB là tiếp tuyến của (O;R) và góc BEA = 1/2 góc BIE. d) Khi đường thẳng d thay đổi sao cho BDE có ba góc nhọn, gọi H là trực tâm BDE. Tính OA theo R để H chạy trên đường tròn ngoại tiếp ABE.