Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 12 năm 2019 sở GDĐT TP Hồ Chí Minh

giới thiệu đến bạn đọc nội dung đề thi học sinh giỏi Toán 12 năm 2019 sở GD&ĐT TP Hồ Chí Minh, kỳ thi vừa được diễn ra vào sáng nay (thứ Ba ngày 05 tháng 03 năm 2019), đề thi được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài thi Toán là 120 phút (không kể thời gian giám thị coi thi phát đề). Thông qua kỳ thi chọn HSG Toán 12 này, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh (TP. HCM) sẽ tuyển chọn được các em học sinh khối 12 giỏi môn Toán đang sinh sống và học tập trên địa bàn thành phố HCM, qua đó thành lập đội tuyển HSG Toán 12 tham dự kỳ thi HSG Toán THPT cấp Quốc gia năm 2019, ngoài ra, các em đạt giải trong kỳ thi lần này còn được tuyên dương, khen thưởng để làm tấm gương học tập cho các em học sinh khác. [ads] Trích dẫn đề thi học sinh giỏi Toán 12 năm 2019 sở GD&ĐT TP Hồ Chí Minh : + Cho hàm số y = (x^2 – 1)^2 có đồ thị (C). Xét điểm M di chuyển trên (C) và có hoành độ m thuộc (-1;1). Tiếp tuyến của (C) ở M cắt (C) tại hai điểm A, B phân biệt và khác M. Tìm giá trị lớn nhất của từng độ trung điểm I của đoạn thẳng AB. + Cho hình lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác vuông cân ở A với BC = 2a và hình chiếu của A’ lên mặt phẳng (ABC) trùng với trung điểm BC. Biết rằng diện tích của tứ giác BCC’B’ bằng 6a^2. a) Tính theo a thể tích của hình lăng trụ đã cho. b) Tính theo a thể tích của hình trụ nhỏ nhất có hai đáy lần lượt nằm trên hai mặt phẳng (ABC), (A’B’C’) và chứa toàn bộ lăng trụ đã cho bên trong. + Cho các số thực a, b, c < (1;+∞) thỏa mãn a^10 ≤ b và log_a b + 2log_b c + 5log_c a = 12. Tìm giá trị nhỏ nhất của biểu thức P = 2log_a c + 5log_b c + 10log_b a.

Nguồn: toanmath.com

Đọc Sách

Đề thi thành lập đội tuyển HSG lớp 12 môn Toán dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận
Nội dung Đề thi thành lập đội tuyển HSG lớp 12 môn Toán dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận Bản PDF Đề thi thành lập đội tuyển HSG Toán lớp 12 THPT dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận gồm 4 bài toán tự luận, có lời giải chi tiết.
Đề thi chọn HSG lớp 12 môn Toán cấp tỉnh năm học 2016 – 2017 sở GD và ĐT Bình Thuận
Nội dung Đề thi chọn HSG lớp 12 môn Toán cấp tỉnh năm học 2016 – 2017 sở GD và ĐT Bình Thuận Bản PDF Đề thi chọn HSG Toán lớp 12 cấp tỉnh năm học 2016 – 2017 sở GD và ĐT Bình Thuận gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số câu trong đề thi : + Trong một buổi tiệc có 10 chàng trai, mỗi chàng trai dẫn theo một cô gái. a) Có bao nhiêu cách xếp họ ngồi thành một hàng ngang sao cho các cô gái ngồi cạnh nhau, các chàng trai ngồi cạnh nhau và có một chàng trai ngồi cạnh cô gái mà anh ta dẫn theo? b) Ký hiệu các cô gái là G1, G2, … G10. Xếp hết 20 người ngồi thành một hàng ngang sao cho các điều kiện sau được đồng thời thỏa mãn: 1. Thứ tự ngồi của các cô gái, xét từ trái sang phải là G1, G2, … G10. 2. Giữa G1 và G2 có ít nhất 2 chàng trai. 3. Giữa G8 và G9 có ít nhất 1 chàng trai và nhiều nhất 3 chàng trai. Hỏi có tất cả bao nhiêu cách xếp như vậy + Cho tam giác ABC với I là tâm đường tròn nội tiếp và M là một điểm nằm trong tam giác. Gọi A1, B1, C1 là các điểm đối xứng với điểm M lần lượt qua các đường thẳng A1, B1, C1. Chứng minh rằng các đường thẳng A1, B1, C1 đồng quy.
Đề thi chọn HSG văn hóa cấp cụm lớp 12 môn Toán năm học 2016 2017 cụm THPT Lạng Giang Bắc Giang
Nội dung Đề thi chọn HSG văn hóa cấp cụm lớp 12 môn Toán năm học 2016 2017 cụm THPT Lạng Giang Bắc Giang Bản PDF Đề thi có lời giải chi tiết. Trích một số câu trong đề thi: + Một hộp đựng 50 quả cầu được đánh số theo thứ tự từ 1 đến 50. Lấy ngẫu nhiên 3 quả cầu từ hộp đó. Tính xác suất để tích 3 số ghi trên 3 quả cầu lấy được là một số chia hết cho 8. + Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc hạ từ A’ xuống (ABC) là trọng tâm của tam giác ABC. Mặt phẳng (BCC’B’) hợp với mặt phẳng đáy góc 45 độ a) Tính thể tích khối lăng trụ ABC.A’B’C’ b) Gọi I, J lần lượt là trung điểm của đoạn thẳng AB và CC’. Tính khoảng cách giữa hai đường thẳng AA’ và IJ
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2016 2017 sở GD ĐT Lai Châu
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2016 2017 sở GD ĐT Lai Châu Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2016 – 2017 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, mặt bên SAC là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy (ABC), đường SB tạo với mặt phẳng (ABC) một góc 0 60, M là trung điểm cạnh BC. Tính theo a thể tích khối S.ABC và khoảng cách giữa hai đường thẳng SM và AC. + Có 2017 học sinh đứng thành vòng tròn và quay mặt vào giữa để chơi trò đếm số như dưới đây: Mỗi học sinh đếm một số lần lượt theo chiều kim đồng hồ, bắt đầu từ học sinh A nào đó. Các số được đếm là 1, 2, 3 và cứ lặp lại theo thứ tự như thế. Nếu học sinh nào đếm số 2 hoặc số 3 thì phải dời khỏi ngay vị trí ở vòng tròn. Học sinh còn lại cuối cùng sẽ được thưởng. Hỏi học sinh muốn nhận phần thưởng thì lúc bắt đầu chơi phải chọn vị trí thứ bao nhiêu theo chiều kim đồng hồ kể từ học sinh A đếm số 1 đầu tiên. + Cho hàm số 3 2 y x x mx 3 4 (m là tham số). Tìm m để hàm số đồng biến trên khoảng (−∞;0).