Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi cấp tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Hòa Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Hòa Bình; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2022. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Hòa Bình : + Cho hệ phương trình (với m là tham số). Tìm m để hệ phương trình đã cho có nghiệm (x;y) thỏa mãn x + y = 5/2. + Cho tam giác ABC vuông tại A, đường cao AH. Cho biết BC = 13 cm và AH = 6 cm. Tính độ dài đoạn thẳng HB và HC. + Hưởng ứng tháng Thanh niên, nhà trường dự kiến tổ chức cho những học sinh lớp 9A đủ điều kiện kết nạp Đoàn đợt 26/3 một buổi lao động cộng sản trồng 18 cây xanh. Đến ngày lao động, có 3 bạn bị nhiễm Covid 19 nên không tham gia trồng cây được, do đó mỗi bạn còn lại phải trồng thêm 1 cây mới đảm bảo kế hoạch đặt ra (số cây mỗi học sinh trồng được bằng nhau). Hỏi thực tế có bao nhiêu học sinh đã tham gia trồng cây?

Nguồn: toanmath.com

Đọc Sách

Đề HSG Toán 9 vòng 2 năm 2023 - 2024 phòng GDĐT Chương Mỹ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Chương Mỹ, thành phố Hà Nội.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Chương Mỹ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Chương Mỹ, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Chương Mỹ – Hà Nội : + Cho biểu thức: A. 1) Rút gọn biểu thức A. 2) Tìm tất cả các giá trị của x để A nhận giá trị nguyên. 3) Tìm giá trị nhỏ nhất của biểu thức: B = A.(x + 16)/5. + Cho biểu thức E = a3/24 + a2/8 + a/12 với a là một số tự nhiên chẵn. Hãy chứng tỏ E có giá trị nguyên. + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC), trên HC lấy D sao cho HA = HD, đường thẳng vuông góc với BC tại D cắt AC tại E. a) Chứng minh: CE.CA = CD.CB. b) Giả sử AB = a, tính BE theo a. c) Gọi M là trung điểm của BE, chứng minh BHM và BEC đồng dạng. HM là phân giác của AHC. d) Tia AM cắt BC tại G. Chứng minh: GB/BC = HD/(AH + HC).
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Bình Xuyên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Bình Xuyên, tỉnh Vĩnh Phúc; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc : + Cho tam giác ABC vuông tại A AB AC có đường cao AH H BC. Trên tia HC lấy điểm D thỏa mãn HD HA. Đường thẳng qua D song song với AH cắt AC tại E. Chứng minh tam giác ADC đồng dạng với tam giác BEC và tính độ dài BC khi AE EC 6 cm 2 cm. + Cho hình vuông ABCD, điểm N thuộc cạnh CD thỏa mãn NC ND 2. Gọi H là giao điểm của AN với BD và M là trung điểm BC. Chứng minh tam giác AHM vuông cân. + Cầu thang đi từ tầng một lên tầng hai của một ngôi nhà được thiết kế liên tục một nhịp với 21 bậc, mỗi bậc có chiều cao và chiều rộng mặt bậc bằng nhau (Ảnh bên). Biết chiều cao từ mặt sàn tầng một đến mặt sàn tầng hai là 3,57m và chiều rộng của mỗi mặt bậc là 25cm. Hỏi vị trí bắt đầu xây cầu thang ở mặt sàn tầng một cách ví trí chân tường xây chắn tại cuối cầu thang bao nhiêu mét và cầu thang dài bao nhiêu mét?
Đề học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS Quang Trung - Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp trường môn Toán 9 năm học 2023 – 2024 trường THCS Quang Trung, thành phố Quy Nhơn, tỉnh Bình Định; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 trường THCS Quang Trung – Bình Định : + Trên bảng ban đầu ghi số 2 và số 4. Ta thực hiện cách viết thêm các số lên bảng như sau: nếu trên bảng đã có hai số, giả sử là a b a b ta viết thêm lên bảng số có giá trị là a b ab. Hỏi với cách thực hiện như vậy, trên bảng có thể xuất hiện số 123456 được hay không? Giải thích. + Cho tam giác ABC, biết rằng 3 A 2 B 1800. Chứng minh: AB2 = BC2 + AB.AC. + Cho tam giác đều ABC có cạnh bằng a. Hai điểm M, N lần lượt di động trên hai đoạn thẳng AB AC AB AC sao cho AM AN 1. Chứng minh MN = a – x – y.