Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG Toán 11 lần 1 năm 2019 - 2020 trường Hậu Lộc 4 - Thanh Hóa

Vừa qua, trường THPT Hậu Lộc 4, tỉnh Thanh Hóa đã tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi Toán 11 THPT lần thứ nhất năm học 2019 – 2020. Đề khảo sát HSG Toán 11 lần 1 năm 2019 – 2020 trường Hậu Lộc 4 – Thanh Hóa gồm có 05 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi gồm 01 trang, có lời giải chi tiết và thang chấm điểm. Trích dẫn đề khảo sát HSG Toán 11 lần 1 năm 2019 – 2020 trường Hậu Lộc 4 – Thanh Hóa : + Cho hình chóp S.ABCD có đáy là hình thang, đáy lớn BC = 2a, AD = a, AB = b. Mặt bên (SAD) là tam giác đều. Mặt phẳng (α) qua điểm M trên cạnh AB và song song với các cạnh SA, BC. (α) cắt CD, SC, SB lần lượt tại N, P, Q. Đặt x = AM (0 < x < b). Tính giá trị lớn nhất của diện tích thiết diện tạo bởi (α) và hình chóp S.ABCD. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC cân tại A(-1;3). Gọi D là một điểm trên cạnh AB sao cho AB = 3AD và H là hình chiếu vuông góc của B trên CD. Điểm M(1/2;-3/2) là trung điểm đoạn HC. Xác định tọa độ điểm C biết điểm B nằm trên đường thẳng x + y + 7 = 0. + Trong mặt phẳng với trục toạ độ Oxy cho hình thang cân ABCD (AB // CD). Gọi H, I lần lượt là hình chiếu vuông góc của B trên các đường thẳng AC, CD. Giả sử M, N lần lượt là trung điểm của AD, HI. Viết phương trình đường thẳng AB biết M(1;-2), N(3;4) và đỉnh B nằm trên đường thẳng x + y – 9 = 0, cosABM = 2/√5.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2018 - 2019 sở GDĐT Phú Yên
Thứ Năm ngày 28 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Phú Yên tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán năm học 2018 – 2019. Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2018 – 2019 sở GD&ĐT Phú Yên được biên soạn theo dạng tự luận với 06 bài toán, đề có thang điểm 20, thời gian thí sinh làm bài là 180 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm học 2018 – 2019 sở GD&ĐT Phú Yên : + Cho bốn số thực p, q, m, n thỏa mãn hệ thức: (q – n)^2 + (p – m)(pn – qm) < 0. Chứng minh rằng hai phương trình: x^2 + px + q = 0 và x^2 + mx + n = 0 đều có các nghiệm phân biệt và các nghiệm của chúng nằm xen kẽ nhau khi biểu diễn trên trục số. [ads] + Cho tam giác ABC có các cạnh BC = a, AC = b, AB = c. Gọi I là tâm đường tròn nội tiếp tam giác. a) Chứng minh rằng a.IA^2 + b.IB^2 + c.IC^2 = abc. b) Chứng minh rằng √a(bc – IA^2) + √(b(ca – IB^2) + √c(ab – IC^2) ≤ 6√abc. Hãy chỉ ra một trường hợp xảy ra dấu đẳng thức. + Cho x, y, z là 3 số thực thỏa mãn x^2 + y^2 + z^2 = 1. a) Tìm giá trị nhỏ nhất của biểu thức P = xy + yz + 2019zx. b) Tìm giá trị lớn nhất của biểu thức Q = xy + yz + 2zx.
Đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2018 - 2019 sở GDĐT Quảng Ngãi
Sáng thứ Sáu ngày 29 tháng 03 năm 2019, sở Giáo dục và Đào tạo Quảng Ngãi tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh Toán 11 năm 2018 – 2019, đề thi được biên soạn theo hình thức tự luận với 06 bài toán, thời gian học sinh làm bài là 180 phút. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2018 – 2019 sở GD&ĐT Quảng Ngãi : + Gọi S là tập hợp tất cả các số tự nhiên gồm năm chữ số được chọn từ các chữ số 1; 2; 3; 4; 5; 6; 7. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn có mặt đúng ba chữ số khác nhau. [ads] + Cho hình chóp S.ABCD có đáy là hình chữ nhật, AD = 2a, AB = a; O là giao điểm của AC với BD, SO vuông góc với mặt phẳng (ABCD) và SO = 4. Gọi M là trung điểm của BC. a. Chứng minh đường thẳng SM vuông góc với mặt phẳng (SAD). b. Gọi φ là góc giữa đường thẳng SC và mặt phẳng (SAD), tính sinφ. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại A, có đỉnh B(-3;2), đường phân giác trong góc A có phương trình x + y – 7 = 0. Viết phương trình đường tròn nội tiếp tam giác ABC, biết diện tích tam giác ABC bằng 24 và A có hoành độ dương.
Đề thi học sinh giỏi cấp tỉnh Toán 11 THPT năm 2018 - 2019 sở GDĐT Thanh Hóa
Thứ Năm ngày 21 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 hệ THPT năm học 2018 – 2019. Đề thi học sinh giỏi cấp tỉnh Toán 11 THPT năm 2018 – 2019 sở GD&ĐT Thanh Hóa được biên soạn theo hình thức tự luận với 05 bài toán, thí sinh có 180 phút để hoàn thành bài thi, không kể thời gian giám thị coi thi phát đề, lời giải chi tiết của đề được biên soạn bởi thầy Nguyễn Xuân Chung, giáo viên Toán trường THPT Lê Lai – Ngọc Lặc – Thanh Hóa. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 11 THPT năm 2018 – 2019 sở GD&ĐT Thanh Hóa : + Có bao nhiêu số tự nhiên có 8 chữ số khác nhau mà có mặt hai chữ lẻ và ba chữ số chẵn, trong đó mỗi chữ số chẵn có mặt đúng hai lần?. [ads] + Trong hệ tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn (C) tâm I, trọng tâm G(8/3;0), các điểm M(0;1), N(4;1) lần lượt đối xứng với I qua AB và AC, điểm K(2;-1) thuộc đường thẳng BC. Viết phương trình đường tròn (C). + Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Một mặt phẳng không qua S cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q thỏa mãn các hệ thức vectơ: SA = 2SM, SC = 3SP. Tính tỉ số SB/SN khi biểu thức T = (SB/SN)^2 + 4(SD/SQ)^2 đạt giá trị nhỏ nhất.
Đề thi học sinh giỏi Toán 11 năm học 2018 2019 sở GDĐT Hà Tĩnh
Ngày 21 tháng 03 năm 2019, sở Giáo dục và Đào tạo Hà Tĩnh tổ chức kỳ thi chọn học sinh giỏi Toán lớp 11 năm học 2018 – 2019, đề thi được biên soạn theo hình thức tự luận với 05 bài toán, thời gian học sinh làm bài thi là 180 phút, kỳ thi nhằm tuyển chọn các em học sinh lớp 11 giỏi môn Toán đang học tập tại các trường THPT tại tỉnh Hà Tĩnh để thành lập đội tuyển học sinh giỏi Toán 11 cấp tỉnh, tham dự kỳ thi học sinh giỏi Toán 11 cấp Quốc gia. Trích dẫn đề thi học sinh giỏi Toán 11 năm học 2018 – 2019 sở GD&ĐT Hà Tĩnh : + Cho lưới ô vuông như hình vẽ, có một con kiến di chuyển từ điểm A đến điểm B bằng cách di chuyển trên cạnh để đi qua các điểm nút của lưới (điểm nút là đỉnh của các hình vuông nhỏ), mỗi bước nó di chuyển xuống dưới hoặc di chuyển sang phải để đến điểm nút gần nhất. Biết rằng nếu đến điểm C thì kiến sẽ bị ăn thịt. Giả sử kiến di chuyển một cách ngẫu nhiên và nó không biết tại C sẽ gặp nguy hiểm. Tính xác suất để kiến đến được điểm B. [ads] + Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật tâm O, cạnh AB = a, AD = 2a. Gọi M, N lần lượt là trung điểm của các cạnh SA, BC. Biết rằng SA = SB = SC = SD và góc giữa đường thẳng MN và mặt phẳng (ABCD) là 60°. a. Tính diện tích tam giác SBM theo a. b. Tính sin của góc giữa đường thẳng MN và mặt phẳng (SBD).